Vol. 87 (2021) REPORTS ON MATHEMATICAL PHYSICS No. 3

INITIAL VALUE PROBLEM FOR THE CONSTANT MEAN CURVATURE
EQUATION IN THE REISSNER-NORDSTROM SPACETIME

Kuo-WEI LEE

Department of Mathematics, National Changhua University of Education,
No. 1, Jin-De Road, Changhua City, Taiwan
(e-mails: kwlee@cc.ncue.edu.tw, d93221007 @ gmail.com)

(Received August 19, 2020 — Revised December 28, 2020)

We characterize all spacelike and spherically symmetric constant mean curvature hypersur-
faces in the maximally extended Reissner—Nordstrom spacetimes. These characterizations also
provide a proof of the existence and uniqueness of the initial value problem for the space-
like and spherically symmetric constant mean curvature equation in the maximally extended
Reissner—Nordstrom spacetimes.
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1. Introduction

Spacelike constant mean curvature (CMC) hypersurfaces in spacetime are interest-
ing and important geometric objects in general relativity. Brill, Cavallo, and Isenberg
proved that a spacelike CMC hypersurface in spacetime has extremal surface area
among fixed enclosed volume [1]. In addition, CMC hypersurfaces are widely used
in the analysis of Einstein constraint equations [3, 6]. In cosmology, CMC foliation
is identified as the absolute time function [16]. Some CMC foliation theory in
cosmological spacetimes can be found in [2, 14]. There are also interesting results
on CMC foliations in spatially noncompact spacetime such as the Schwarzschild
spacetime [7, 8, 12, 13].

In this article we consider spacelike, spherically symmetric, constant-mean cur-
vature hypersurfaces (we use the abbreviation SSCMC hypersurfaces in convenience)
in the maximally extended Reissner—Nordstrom spacetime. The Reissner—Nordstrém
spacetime is the simplest nontrivial static solution of the FEinstein—-Maxwell field
equations. For some physical reasons, cosmic censorship to exclude naked singulari-
ties for example, the Reissner—Nordstrom spacetime with charge smaller than mass is
much more interesting than other cases, so we will focus on SSCMC hypersurfaces
in this spacetime model.
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This paper will answer the existence and uniqueness of the initial value problem
for the SSCMC equation in the maximally extended Reissner—Nordstrdm spacetime.
Here we state two main results in the following comprehensive way.

CHARACTERIZATION THEOREM. All spacelike and spherically symmetric con-
stant mean curvature hypersurfaces in the maximally extended Reissner—Nordstrom
spacetime with the charge smaller than the mass can be characterized by two
parameters ¢ and ¢, which are two constants of integration of the solution for the
constant mean curvature equation in the standard Reissner—Nordstrom coordinates.

MAIN THEOREM. The initial value problem for the spacelike, spherically symmet-
ric, constant mean curvature equation in the maximally extended Reissner—Nordstrom
spacetime with the charge smaller than the mass is solvable and the solution is unique.

The precise mathematical settings of the characterization theorem and the initial
value problem (main theorem) are discussed in Section 4 and in Section 5, respectively.

Remark that Brill, Cavallo, and Isenberg in [1] gave some general discus-
sions on SSCMC hypersurfaces in spherically symmetric static spacetime. Tuite and
O. Murchadha also studied SSCMC hypersurfaces in the Reissner-Nordstrom space-
time [15]. Compared with these research projects, here we provide different analysis
approaches, dress more geometric insights (figures), and show more properties of
SSCMC hypersurfaces in this topic.

The motivation for studying SSCMC hypersurfaces in such a detailed way is that
we hope to answer the problem of existence of CMC foliations in the Reissner—
Nordstrom spacetime. In previous experience [7, 8, 10, 11], we have successfully
constructed CMC foliations in the Schwarzschild spacetime. When facing SSCMC
hypersurfaces and CMC foliation problems in the Reissner—Nordstrom spacetime,
we have to overcome two difficulties. One difficulty is that the Penrose diagram
of the maximally extended Reissner—Nordstrom spacetime consists of infinite many
Reissner—Nordstrom spacetime regions. It is more complicated than the Schwarzschild
spacetime (only four regions). We need a thorough discussion on glueing of two
adjacent spacetimes and two adjacent SSCMC hypersurfaces.

The other difficulty is that the Reissner—Nordstrom spacetime metric has one
more higher-order term in radius part than the Schwarzschild metric. We have to
do some adjustments near the horizon to make sure our approaches also work in
this new model. Fortunately, all SSCMC hypersurfaces can be characterized as well,
and we expect these arguments will give a good understanding on CMC foliation
problems.

The organization of this paper is as follows. We first give a brief introduction to
the maximally extended Reissner—Nordstrom spacetime in Section 2. In Section 3,
we study SSCMC hypersurfaces in each region and analyze their asymptotic be-
haviours, especially at infinity, coordinate singularities, and spacetime singularities.
The characterization of SSCMC hypersurfaces are discussed in Section 4. We will
set up the initial value problem for the SSCMC equation and prove its existence
and uniqueness in Section 5.
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2. Preliminaries

The Reissner—Nordstrom (RN) spacetime (L* ds?) is a time-oriented, four-
dimensional Lorentzian manifold with the metric

r

2 2 1
ds? = — <1 My e—2> A+ ——— 424 72d0% + P sin20de?, (1)
r 2m &2
(-3+9)
where m > 0 is called the mass, and e is called the charge. If e = 0, the spacetime
reduces to the Schwarzschild spacetime.

In this paper, we mainly concentrate on the case e’

< m?. Denote the function

2m  e* 2 —2mr+é*

h(r) =1 p + 2= 2
The equation r?>—2mr4e?> = 0 has two distinct real roots, called ry = m=++/m? — e2.
Although h(ry) = 0 and it looks that the metric (1) has singularities at r = ry,
after coordinates change, we know that » = ry are coordinates singularities. On the
construction of the maximally extended RN spacetime we refer to the note [5, 9]
for more detailed discussions. Here we only describe the structure of the Penrose
diagram of the maximally extended RN spacetime in Fig. 1.

Fig. 1. Penrose diagram for the maximally extended RN spacetime with e2 < m?.

To construct this diagram, first we take one family of RN spacetimes. Each
spacetime in this family is divided into three regions r > ry, r— <r < ry, and
0 < r < r_ in the standard coordinates (¢,r, 6, ¢). There is one-to-one and onto
correspondence from r > ri to region I, from r_ < r < ry to region II, and
from 0 <r < r_ to region III, respectively. In the Penrose diagram, the spacetime
metric can be smoothly extended at the interface of region I and II, or region
IT and ITI. Next, taking another family of RN spacetimes, we establish and label
the correspondence from three regions r > ry, r— <r <ry, 0 <r <r_ of each
RN spacetime to regions I’, II’, and III’, respectively. Notice that we choose
opposite timelike direction in the coordinates (z,r, 6, ¢) for the second family of
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RN spacetimes. The maximally extended RN spacetime is constructed by gluing
two families of RN spacetimes consecutively at r, for I and II’, or I’ and II;
at r_ for IT and II’, or II and II’, respectively.

In this article, we will set (T, X) coordinates as in Fig. 1 and then choose dr
as future-directed timelike vector field of the maximally extended RN spacetime.
The metric of the maximally extended RN spacetime can be formally written as

ds* = PX(T, X)(—=dT? + dX*) + r>de* + r?sin® 6 d¢?,
where P(T, X) is a smooth function and of nonlinear relations with » and ¢.
Let £ : (T = F(X), X,r,0) be an SSCMC hypersurface. The spacelike condition
is equivalent to (F'(X))?> < 1, and the mean curvature equation will be

F'+(1— (F))(Zﬁ+ﬁ+( +%) )—3HP(1 (FY)3 =0, ()

where F' = F'(X), F” = F"(X), and the subscription means the partial derivative
with respect to the variable. The computation of this equation is derived in the
note [9] and we skip the computation here.

Our goal in this article is to analyze solutions of Eq. (2) for constant
mean curvature H. However, since functions r = r(T,X) = r(F(X),X) and
P =P(T,X)= P(F(X), X) are of complicated nonlinear relations with 7 = F(X)
and X, it is not easy to characterize solutions through Eq. (2). Instead, we will start
from the SSCMC equation in the standard coordinates (¢, r, 6, ¢) of the RN spacetime
to explore the properties of SSCMC hypersurfaces in the standard coordinates and
then discuss the relations between the coordinates (¢, r,60,¢) and (T, X, 6, ¢).

As a remark, when we analyze SSCMC hypersurfaces in Section 4, we use (U, V)
and (U,V) coordinates. They both have linear relations with respect to (X, T)
coordinates by U =X —-T, V=X +T, and U=X-T+n/2, V=X+T+n/2.
Fig. 1 also shows the UV and UV-axes. More discussions on coordinates changes
can be found in the note [9].

3. SSCMC equation in Reissner-Nordstrom (¢, 7, 6, ¢) coordinates

Assume that an SSCMC hypersurface X in the standard RN spacetime coordinates
is of the form (t = f(r),r, 6, ). We are going to derive the SSCMC equation. The
advantage of this process is that the SSCMC equation in standard coordinates and
the solution have an explicit expression so that we can analyze the behaviour of
SSCMC hypersurfaces at infinity, coordinate singularities, and spacetime singularities.

There are six different regions in the maximally extended RN spacetime. In the
following subsections, we first deal with the SSCMC equation in region I and III,
and then analyze asymptotic behaviours of SSCMC hypersurfaces at r = oo, rq, r_,
and 0. All SSCMC hypersurfaces in region I’ and III’ are similarly treated. The
SSCMC equation in region II needs more discussions because d, becomes timelike
and o, becomes spacelike. Although d; and 0, change type, all SSCMC solutions
can be characterized as well.
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3.1. SSCMC hypersurfaces in region I and region IIT

PROPOSITION 3.1. Suppose that X : (t = f(r),r, 0, ¢) is an SSCMC hypersurface
in the RN spacetime which maps to the region 1 or III. The mean curvature equation

IAY
"4 1—(’)2h 2h+h/ +h/ "—3H 1—(’)211%—0
f((%f”)(??)z)f (zf)—’

2m  é*
h(r):l———i——2
r r

where

and H is the constant mean curvature. The solution is

f'(riH,c)= lr; H, ) where Ir;H,¢) = ! (Hr — i)
T hWT+PE H o) o h(r) r2)’

for some constant of integration c. After integration it gives

_ g I(x; H,c)
fr; H,C,C)=/
rimi BV 1 4+ 12(x; H, ©)

where ¢ is another constant and ry; is an initial number.

dx + c,

Proof: Consider F(t,r,0,¢) = —t + f(r) and let X be a level set of the
function F. We compute

VF O + f'(r)h(r)o,.

G

The spacelike condition of X is equivalent to

LI (f'(r)*h(r) <0 (f'(Nh(r)* < 1.
h(r)

Since we require dy be the future-directed timelike vector field in the extended RN
spacetime, we choose

VF (755 1) £, 0,0)
CVEVEVE] [ (0o

eq

as the future-directed unit timelike normal vector in region I or region IIT. Next,
we choose an orthonormal frame on 7,%:

0,0,1,0) 0,0,0,1) (f'(r),1,0,0)
e = —, (= —— e3 = .
Jis — e

2 :
r rsin6
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By direct computation, the second fundamental form of ¥ in (L%, ds?) will be
1 hf'
1 )
(1/h—n2h)? "
1 1 h/ / h/ /
o = (g (7 50) +15):
(l/h—(f/)zh)z / f

and h;; =0 for i # j. Hence the mean curvature equation becomes

I ((1 - (f/)zh) (% ; h—/) ; ’i/) - 3H (1 - (f’)zh)% —0. @
h ro2 h h o

To solve f(r), we set the substitution sin(n(r)) = f'(r)h(r), then Eq. (3) becomes

hit =hyp =

(t Y+(2+”>t 3H<1> 0=t : (1 -3)
an — — Jtann — — | = ann = r——,
RV B VA TR TR
where ¢ is a constant of integration.'

Next, we write

l(r; H, c) ! (H c) tan
riHc¢)=——\(Hr— =)=
Jh) ) "
for convenience. Since sinn = f’'h implies
t f/h
ann = —————,
V1= (f'h)?
we get
=
T+
o)
' [(x; H, _
frHoe.d) :/ WHO ey
rini h(X)y/1+12(x; H, )

where ¢ is a constant and ry,; iS an initial number. The solution is defined on the
connected coordinates region I or region III. O

Next, we will discuss asymptotic behaviours of SSCMC hypersurfaces.

PROPOSITION 3.2. For an SSCMC hypersurface % : (t = f(r),r, 0, ¢) mapping
to region 1 of the maximally extended RN spacetime, the following results hold:

(A) If H>0, then lim f'(r) =1 and X is asymptotically null.
r—00
1 1 1
'We multiply the integrating factor r2h2 and get (r2h2 tann) = 3Hr?, so r2h2 tany = Hr> — c. Here

we choose the constant of integration —c in order to have a better expression when discussing the smoothness
of SSCMC hypersurfaces.
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B) If H=0, then lim f'(r) =0 and T is asymptotically spacelike.
r—00
(© If H<QO, then lim f'(r) = —1 and X is asymptotically null.
r—0o0

Proof: We observe the leading order of f/(r),
I(r; H,c)

h(r)/1+12@; H, ¢)

Hr —c/r2

flr) =

a-2m/r+ ez/rz)\/l —2m/r+e*/r?+ (Hr — c/r2)2
When computing the square of the length of the timelike normal vector
1 1
VF,VF)=———+h "r)? = — ,
( )= TROG) | —2m/r +e2/r2 + (Hr —c/r2)?
we know that lim (VF,VF) =0 if H #0, and lim(VF,VF) = -1 if H =0.
r—00 r—00

Hence ¥ is asymptotically null for H # 0 and asymptotically spacelike for H = 0.
0

PROPOSITION 3.3. For an SSCMC hypersurface ¥ : (t = f(r),r,0,¢) mapping
to region 1 of the extended RN spacetime, the following conclusions hold:

A) If ¢ > riH, then f'(r) <0 near r =ry and lim f(r) = oo.

r— @t
B) If c= riH, then H - f'(r) >0 near r = r, and lim+f(r) is finite.
r—(ry)
©) If c < riH, then f'(r) >0 near r =ry and lim)+ f(r)=—o0.
r—>(r4

Furthermore, the spacelike condition of X is preserved as r — (ry)* for all c € R.
Proof: From the formula
Hr — c/r2
h(r)y/h(r) + (Hr —c/r?)?
. (Hr3 —o)r?
=) =P =) =)+ (HP = o)

since ¥ maps to region I, the denominator is always positive, so the sign of f’(r)
is determined by the sign of Hr® —c.

(A) If c>r3H, f'(r)~O((r—ry)™") and f'(r) <O near ry, so lim f(r)=o0.

=)t

f'r) =

B) If ¢ = riH, then
H(r—rJr)(r2+rr+—|-r42_)r2

fl(riH,c) = .
(r—ro)(r —r_)\/rz(r —r ) —r )+ (r—r)2(r 2 +rre+r2)?
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Since f'(r) ~ O((r —r+)_%) if H # 0 and the sign of f/(r) is the same
as the sign of H, so lim f(r) is finite. If H =0, then f'(r) =0 and

r— ()t
f(r) =c is a constant.
(C) Ifc<riH, f'(r)~O0((r—ry)~ ") and f'(r) >0 near ry, so  lim . f(r)=—o0.
r—(ry)
Next, we look at

1 . rt

_1—2m/r—|—62/r2+(Hr—c/r2)2 - _rz(r—r+)(r—r,)+(Hr3—c)2'
If ¢ #r3H, then

(VF,VF) =

4
-

lim (VF,VF) = ———— <0,
r— ()t (Hr+ - C)2

so the hypersurface is spacelike. If ¢ = rfrH , then

4
r
lim (VF,VF)= Ilim -— = —00,
r ()T >0t r2r—r)(r—r )+ H*X(r—r)2(r2+ryr —|—r42r)2
so the hypersurface is spacelike as well. [

PROPOSITION 3.4. For an SSCMC hypersurface % : (t = f(r),r, 0, @) mapping
to region III of the extended RN spacetime, the following conclusions hold:

(A) If c >r3H, then f'(r) <0 near r =r_ and lim f(r) = —o0.

r—>@r-)"
B) If c=r>H, then H- f'(r) <0 near r =r_ and lim f(r) is finite.
r—>@r-)"
(C) If c <r>H, then f'(r) >0 near r =r_ and lim f(r) = oc.
r—>@r-)"

Furthermore, the spacelike condition of X is preserved as r — (r—)~ for all ¢ € R.
Proof: From the formula

, Hr—c/r2 (Hr3—o)r?
fir) = = ,
h()Vh(r)+(Hr—c/r2)?  (r—r)r—r )/r2(r—ry)(r—r_)+(Hr}—c)?
since ¥ maps to the region III, we know that (r —r)(r —r_) > 0, so the sign
of f'(r) is determined by the sign of Hr3 —c.
A Ifc>r*H, f'(r) ~ O((r—r_)"") and f'(r) <0 near r_, so lim f(r) =

r—>(r-)"

—OQ.
(B) If ¢ =r3H, then

Hr—r )@ +rr_+r2)r?

fl(r;H, ¢) = ,
(r—ry)(r —r,)\/r2(r —r ) =r )+ —r )2 Frr_+r2)?
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f'tr)y ~ O((r —r_)_%) if H # 0 and the sign of f’(r) is the same as
the sign of —H, so lim f(r) is finite. If H =0, then f'(r) = 0, and

r—>r—)"
f(@r) =c is a constant.
(C) Ifc<r*H, f'(r)~O0((r—r_)"') and f'(r) >0 near r_, so lim f(r)=o0.
r—>@r-)"

Next, we compute

1 rt
N = A v i (Hr =P~ PG —r )+ (HP P

If ¢ £ r3 H, then

4

lim (VF,VF)= —+ <0,
r(r_)t (Hr? —¢)?

so the hypersurface is spacelike. If ¢ = r> H, then

r4

lim (VF,VF)= 1lim - =—
r~>(r_)+< ) rsot P2 —r)r—r_)+H2(r—r_)2(r24+r_r+r?)?

also implies that the hypersurface is spacelike. (]

PROPOSITION 3.5. For every H € R, rl_i)r(r)1+ f'(r) is finite for all ¢ € R so that
all SSCMC hypersurfaces in region III will touch the spacetime singularity r = 0.
Proof: We observe the leading order of f/(r),
I(r; H,c) Hr3—¢

h)WT+ G H,¢) (2= 2mr + e2)/r2(r2 — 2mr + €2) + (Hr? — ¢)2
If ¢ #0, then

flr)=

c c 1
lim f'(r) = — = — = —— .s¢n
R N T
is finite. If ¢ = 0, then
H 2
lim f'(r) = lim il —0. 0
r—0+ r—0t (r2 — 2mr + e2)\/r2 — 2mr + €2 + H?r*

Fig. 2 illustrates the correspondence of SSCMC hypersurfaces between standard
coordinates (¢,r,60,¢) and (T, X, 0, ¢).

3.2. SSCMC hypersurfaces in region I’ and region IIT’

Recall the construction of the maximally extended RN spacetime. Since regions
I’ and TII’ come from second family of RN spacetime combining together with
first family of RN spacetime in upside-down way, o, direction points past direction.
It implies that an SSCMC hypersurface of the form (t = f(r),r, 0, ¢) has opposite
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T

i | c>r3H : I 7=20

i | — T =T

I | c:riH - =Tr_

3 =

c<riH g c<riH r=oo
c=r3H ! i T
c>r3H U

! - X

|

I |

Fig. 2. SSCMC hypersurfaces with H > 0 in region I and III.

sign of the mean curvature when it maps to prime regions or nonprime regions.
Therefore, we can get SSCMC hypersurfaces in region I’ and III’ by changing
the sign of the mean curvature in reigon I and III.

Here we summarize SSCMC solutions in regions I’ and III’. The constant mean
curvature equation of an SSCMC hypersurface X : (t = f(r), r, 6, ¢) which maps to
region I’ or region II’ of the maximally extended RN spacetime is

P ((1 _ (f/)2h> @ + h—/) + h—/) Py (1 _ (f’)zh)g —0
h r 2 h h o

The solution is

friHo=— 09
h(r)v/1+12(r; H, ¢)
where
I H, ) = —— <—Hr + 3)
Y Vh(r) r2
and

r I(x; H,c)

i H,c,c) =
SO e /rm 1+ PG H, o)

where ¢ and ¢ are constants, and ryy; iS an initial number.
Next, we can conclude and summarize asymptotic behaviours of SSCMC hyper-
surfaces in regions I’ and IIT’.

dx +c,

PROPOSITION 3.6. For an SSCMC hypersurface X : (t = f(r),r,0,¢) mapping
to region 1’ of the maximally extended RN spacetime, the following results hold:

(A) If H>0, then lim f'(r) = —1 and X is asymptotically null.
r—00

B) If H=0, then lim f'(r) =0 and X is asymptotically spacelike.
r—>0o0

(C) If H <O, then lim f'(r) =1 and T is asymptotically null.
r—00
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PROPOSITION 3.7. For an SSCMC hypersurface X : (t = f(r),r,0,¢) mapping
to region 1’ of the maximally extended RN spacetime, the following conclusions
hold:

(A) If c>r3H, then f'(r) >0 near r =ry and lim f(r) = —oc.

r—(r4)t
B) If c= riH, then H - f'(r) <0 near r =r, and lim+f(r) is finite.
r—(ry)
©) If c < riH, then f'(r) <0 near r =ry and lim)+ f(@r) = oo
r—>(r4

Furthermore, the spacelike condition of ¥ is preserved as r — (ry)" for all ¢ € R.

PROPOSITION 3.8. For an SSCMC hypersurface X : (t = f(r),r,0,¢) mapping
to region W1’ of the maximally extended RN spacetime, the following conclusions
hold:

(A) If ¢ > r3H, then f'(r) >0 near r =r_ and lim f(r) = oo.

r—>Fr-)"
B) If c=r>H, then H- f'(r) >0 near r =r_ and lim f(r) is finite.
r—@r-)"
(C) If c<r’H, then f'(r) <0 near r =r_ and lim f(r) = —oo.
r—>r-)"

Furthermore, the spacelike condition of ¥ is preserved as r — (r_)~ for all c € R.

PROPOSITION 3.9. For every H € R, lim+ f'(r) is finite for all ¢ € R so that
r—0
all SSCMC hypersurfaces in region T’ will touch the spacetime singularity r = 0.

~

I
i

I

c>r2H :
c=r3H i
I

I

I

I

c<r3H

Fig. 3. SSCMC hypersurfaces with H > 0 in regions I’ and III’.

Fig. 3 illustrates SSCMC hypersurfaces between standard coordinates (¢, r, 6, ¢)
and (7T, X, 0, ¢) in regions I’ and IIT°.

3.3. Cylindrical hypersurfaces in region IT

In the RN spacetime region II, because h(r) =1 —2m/r +e?/r* <0, we know
that —d, is future directed timelike and 0, is spacelike. To find SSCMC hypersurfaces
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in region II, we may first assume that X is of the form (t,r = g(¢),0, ¢) for
some function r = g(¢).

First of all, we can get cylindrical hypersurfaces. This result is known in [15],
so we skip the proof here. We also refer to [9] for further explanations.

PROPOSITION 3.10. [15] Each constant slice r =ry, ro € (r—_,ry) in region II
is an SSCMC hypersurface with mean curvature

2r§ — 3mry + >

3r§\/—rg + 2mrg — €2

H(rp) =

We say r =ry, ro € (r—,ry) is a cylindrical hypersurface.

Next, we have to prove more properties on cylindrical hypersurfaces as the
following ones.

PROPOSITION 3.11. For all m?* > ¢* > 0, the function
2r2 — 3mr + €*
3r2/=r? + 2mr — €2
is an increasing function on (r—,ry). Furthermore, cylindrical hypersurfaces r =

ro, ro € (r_,ry) have the following properties:

(A) If ro € (r—, Bm + ~/9m? — 8e2) /4), then H(rg) <0 and lim . H(r) = —oo.
r—@r-)

(B) If ro = Bm + v/9m? — 8e2) /4, then H(ry) =0 is a maximal hypersurface.

(C) If ro € (Bm + v/9m? — 8e2)/4,r,), then H(rg) >0 and lim H(r) = oc.

r—(r4)”

H(@r) =

Proof: First of all, we will prove that H(r) is increasing. Direct computation
gives

H ) 2r* — 8mr3 + 9m2r? 4 3e2r? — 8eZmr + 2e*
r) = )

3r3(—r2 4+ 2mr — ez)%
We will show that H'(r) > 0 for all m> > e?> >0 on (r_,ry). Let
p(r) = 2rt — 8mr? + 9m?r? 4 3¢*r? — 8e>mr + 2¢*

defined on [r_,r.]. It suffices to show that the absolute minimum value of p(r)
on [r_,ry] is positive.
Since
p'(r) = 8r° — 24mr* + 18m*r + 6e*r — 8¢*m,

there are at most three critical points of p(r) on [r_,r.]; that is, there are at most
three real roots r;, i = 1,2,3 satisfying p’(r;) =0 on [r_, r,]. Since
(m2 — ez)

5 (=3r% + 9mr — 4¢%),

p(r) =p' Q) +
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we have
(m* — &%)

5 (—31’1-2 + 9mr; — 462).

p(ri) =

The polynomial

3 \* 27
15(”)=—3r2+9mr—462=—3<r_§m> +Zm2_€2

satisfies

2 2,2
ﬁ(ri):3mri_32:3m2—62:|:3m\/m: e~ 4+ 3m-e -0,
3m? — e2 F 3m/m2 — e2

so p(r) >0 on (r_,ry). It implies that all critical points r; in the interval (r_,ry)
must satisfy p(r;) > 0. In addition, we have p(ri) = 2m(m?>—e?)ri+e*(m*>—e*) > 0.
Thus, the absolute minimum value of p(r) on [r_,r;] must be positive, and hence
H'(r) > 0.

Since H(r) is increasing, H(r) = 0 has a unique solution
_ 3m 4 v9m? — 8e?
N 4
in the interval (r_,r,). Here we remark that

3m — v/9m? — e?

r

r = <r_.
4
Since
2 2 _ 3 2
lim H() = lim —— "¢ i,
F>r4 F—>r4 3r2«/—(r —ry)(r—r)
all properties stated in Proposition 3.11 are characterized. (]

Fig. 4. Cylindrical hypersurfaces in region II.

From the above argument, we can plot cylindrical hypersurfaces in region II as
Fig 4.
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3.4. Noncylindrical SSCMC hypersurfaces in region II

For r = g(t) # constant, we piecewisely consider its inverse function ¢t = f(r)
with f'(r) # 0 whenever it is defined. Here we allow f'(r) = oo or —oo because
they correspond to g’(r) = 0 at some point.

PROPOSITION 3.12. Suppose that X : (t = f(r),r, 0, ¢) is an SSCMC hypersurface
in the RN spacetime which maps to the region II. Then

1 I>(ryH,c) ., 0
o\ P Ho—1 0 170 | c

flin= where I(r; H,c) =

—Hr+—).
1 2(r: H. c) g ~—h(r) ( r2>
o\ g o1 T

The integration of f'(r) gives

‘ (" 1 | IP(x;H,c) _
f@r; H,c,c) —/r.ini “hoV PG A, C)_ldx—l-c, or @)

Heaz [ I2(x; H, c) dr iz 5
T ’C’C)_/nmhu) P Ho -1 ¢ ©

according to the sign of f'(r), where ry; is an initial number, and c,c are two
constants.

The proof of Proposition 3.12 is similar to the proof of Proposition 3.1. We
refer to the note [9] for the complete proof of this proposition.

3.5. Cylindrical hypersurfaces in region II’

PROPOSITION 3.13. [15] Each constant slice r =ry, ro € (r_,ry) is an SSCMC
hypersurface (called cylindrical hypersurface) with mean curvature

2r§ — 3mry + €2

3r§\/—r§ + 2mrg — e

H(ro) = -

PROPOSITION 3.14. For all m* > ¢* > 0, the function
2r2 — 3mr + €2
3r2/—r2 + 2mr — €2

is a decreasing function on (r—,ry). Furthermore, cylindrical hypersurfaces r =
ro, ro € (r—,ry) have the following properties:

(A) If ro € (r—, Bm + ~/9m? — 8¢2)/4), then H(ro) >0 and lim H(r) = cc.

r—@r-)t

H(r) =
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B) If ro = Bm + v9m? — 8e?) /4, then H(ry) =0 is a maximal hypersurface.
(C) If ro € (Bm + v/9m? — 8e?) /4, ry), then H(rp) <0 and lim H(r) = —oo.
r=>(r4)”
3.6. Noncylindrical SSCMC hypersurfaces in region I’

For r = g(¢) # constant, we piecewisely consider its inverse function ¢t = f(r)
with f'(r) # 0 whenever it is defined. Here we allow f'(r) = 0o or —oo because
they correspond to g’(z) = 0 at some point.

PROPOSITION 3.15. Suppose that ¥ : (t = f(r),r, 0, ¢) is an SSCMC hypersurface
in the RN spacetime which maps to the region I1°. Then

1 12(r; H,
(r c) if >0,
—h(r)\ I2(r; H,c)—1 1 c
— (Hr

fn= where I(r; H, c) =

1 2 H, ) o V=h(r)
o\ e o1 T =0

The integration of f'(r) gives

: [ 1 | PGiH o _
f(r,H,c,c)—/rim_h(x) 12(X;H’C)_1dx+c, or (6)

CH e ) — ' I>(x; H, ¢) Ir iz ;
f: ’c’c)_/,mih(x) P Ho—1°7¢ @

according to the sign of f'(r), where ry; is an initial number, and c,c are two
constants.

3.7. Position of the SSCMC hypersurfaces in region II and region II’

Spacelike condition of an SSCMC hypersurface in region II in fact restricts the
domain of f(r) in region II; that is, from the formula

I(r;H,c) = (—Hr-l-%)>l<:>c>Hr3+r(—r2+2mr—e2)%,
r

1
N —h(r)
we consider a function k(r; H) = Hr3 + r(—r% + 2mr — e2)% defined on (r_,ry),
then the domain of f(r) in region II will be
{fre@_,ro)lk(r; H) <c}U{r e r—,ry)|k(r; H)y=c and f(r) is finite}.

At first, we can describe the function k(r; H) as follows.

PROPOSITION 3.16. Fixed H € R, the function k(r; H) has a unique maximum
point at r = Ry, where r = Ry is a cylindrical hypersurface with mean curvature H.
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Proof: Direct computation gives (the prime means to take derivative with respect
to r)

K(ry Hy = 3Hr + (1% + 2mr — )2 + 7 - —(r +2mr — €)1 - (=2 + 2m)

=3r%(H — H(r)).

From Proposition 3.11, we know that H(r) is an increasing function on (r_,r;),
so k(r; H) has only one critical point » = Ry, where H(Ry) = H. Furthermore,
k'(r; H) >0 on (r_,Ry) and k'(r; H) <0 on (Ry,ry), so the critical point will
attain the maximum value of k(r; H). [l

Similarly, spacelike condition of an SSCMC hypersurface in region II’ in fact
restricts the domain of f(r) in region II’; that is, from

c 3 2 2\ 1
I(r;H,¢c) = r——)>1<:>c<Hr —r(—=r"4+2mr —e”)2,

1
~—h(r) <H r2

we consider another function k(r; H) = Hr’ — r(—r? + 2mr — ez)% defined on
(r_,r.), then the domain of f(r) in region II’ is

{re@_,r)lk(r; H) > c}U{r e (r_,r)|k(r; H) = ¢ and f(r) is finite}.

PROPOSITION 3.17. For a fixed H € R, the function k(r; H) has a unique
minimum point at r = ry, where r = ryg is a cylindrical hypersurface with mean
curvature H.

Proof: Direct computation gives
k(r H)_3Hr — (= r—|—2mr—ez)2—r —( r+2mr—e) - (=2r 4+ 2m)

=3r%(H — H(r)).

From Proposition 3.13, we know that H(r) is a decreasing function on (r_,r;),
o) lz(r; H) has only one critical point r = ry, where H(ry) = H. Furthermore,
K'(r;H) <0 on (r_,ry) and kK'(r; H) > 0 on (ry,rs), so the critical point will
attain the minimum value of Iz(r; H). O

For a fixed H € R, we plot graphs of k(r; H) and k(r; H) in Fig. 5. Two
graphs of functions (r,y = k(r; H)) and (r,y = I;(r; H)) form a closed loop. From
this loop and a horizontal line y = ¢, it is much easier to know the domain of the
function f(r). That is, the preimage of the line outside the loop will determine the
domain of f(r) and hence we know the position of the SSCMC hypersurface.

More precisely, the following proposition will describe SSCMC hypersurfaces in
regions IT or II’.
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(a) H>0 (b) H<O

Fig. 5. Graphs of k(r; H) and k(r; H).

PROPOSITION 3.18. Given H > 0, denote Cy = {nax )k(r; H) =k(Ry; H),
re(r—,r ~ ~
where k(r; H) = Hr3 +r(—r* 4 2mr — ez)%, and cy = {IIII;— )k(r; H)=k(ry; H),
~ re(r—,r.
where k(r; H) = Hr3 — r(=r? 4+ 2mr — ez)%. There are seven types of noncylin-

drical SSCMC hypersurfaces in region IL or region IL’ with formulae of f(r) in
Propositions 3.12 and 3.15 according to the value of c:

(A) If ¢ > Cy, then f(r) is defined on (r_,ry) in region II.

B) If c=Cy, then f(r) is defined on (r_, Ryg) or (Ryg,ry) in region IL

O If riH < c¢ < Cyg, then f(r) is defined on (r_,r'] or [r",ry) in region
IO, where k(r') = k(") =c. At r =7+ or r =7r", we can take another
function also defined on (r_,r'] or [r”,ry) but different sign of slope joined
at r =r" or r = r”, respectively, such that the union of two graphs of
functions forms a smooth SSCMC hypersurface in region II.

D) Ifr*H <c < riH, then f(r) is defined on (r_,r'] in region I, or [r",ry)
in region I, where k(r') = k(") =c. At r =71 or r = 1", we can take
another function also defined on (r_,r'] or [r”,ry) but different sign of
slope joined at r = r' or r =r”, respectively, such that the union of two
graphs of functions forms a smooth SSCMC hypersurface in region IL or
IT°, respectively.

() If cu < ¢ <r>H, then f(r) is defined on (r_,r'] or [r",ry) in region
I°, where k(r') = k(r"") = c. At r =1 or r =", we can take another
function also defined on (r—,r'] or [r”,ry) but different sign of slope joined
at r =r" or r = r”", respectively, such that the union of two graphs of
functions forms a smooth SSCMC hypersurface in region IL°.

(F) If c =cpy, then f(r) is defined on (r_,ry) or (rg,ry) in region IL°.

(G) If ¢ <cy, then f(r) is defined on (r_,ry) in region IL°.

Before proving Proposition 3.18, we remark that for H =0 or H <0, SSCMC
hypersurfaces in regions II or II’ can be treated similarly. The only difference is
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Cy
3
7+H

r3H _|_
CH -

Fig. 6. Using y = ¢, k(r; H) and k(r; H) to characterize different types of SSCMC hypersurfaces. This figure
illustrates the H > 0 case.

that different types of noncylindrical SSCMC hypersurfaces are characterized by the
values Cy > r’ H = riH >cy or Cy>r’H > riH > cy, respectively. All types
of noncylindrical SSCMC hypersurfaces can be similarly interpreted from the graphs
of k(r; H) and I;(r; H), Fig. 5 (b) for example.

Proof: The key point is to make sure the order of f’'(r) when I(r; H,c) — 1;
that is, we observe the formula

| I>(r; H, ¢)
()= —h(r)‘, P Ho_1

We only need to take care of the denominator part ﬁ For the cases (A)
ryH,c)—

or (G), since I(r; H,c) > 1 for all r € (r_,ry), SSCMC hypersurfaces will range
over (r_,ry) in the region IT or IIL’, respectively.

For cases (B) or (F), since it corresponds to the maximum value of k(r; H)
or minimum value of l;(r;H), solutions of 1*(r; H,c¢) — 1 = 0 are double real
roots at r = Ry or r = ry. It implies that |f'(r)| is of order O(|r — Ry|™") or
O(lr —ry|™"), so we get |f(r)] = o0 as r — Ry or r — ry.

For cases (C), (D), or (E), since solutions of [*(r; H,c) — 1 = 0 will be two

.. . _1
distinct real roots, say r = r’ or r = r”, we know that | f'(r)| is of order O(|r—r'|"2)

or O(|r —r”l_%). It indicates that f(r) is finite at r = r' or r = r”. We choose
one function with f’(r) > 0 and another function with f/(r) < O with the same
domain, the same ¢, and adjust another constant ¢ so that two functions f(r) have
the same value at » =’ or r =r”. For example, from the formulac (4) and (5),
or (6) and (7), if we take the initial number as ry; = r’ or ryy; = r”, then they
share the same ¢ value. Therefore, the union of two graphs of functions forms
a continuous SSCMC hypersurface in region II or region II’.
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We still need to prove the smoothness at the joint point of two SSCMC
hypersurfaces. Here we look at the case r = r’, and the case r = r” is similar. We
consider their inverse functions of ¢t = f(r) in (4), and (5), or (6) and (7), with
Fini = ' that is, we rewrite the SSCMC hypersurface as a graph of r = g(¢) such
that g(¢) = r’. Direct computation (by induction) gives

k g2 i+i . _
g(2k+1)(t) _ Zi:o Akvl (l 1) 2 lf < C,
(=1 Zf:o Api(I* — 1)i+% if t > ¢,
and
k 12 1N . _
g(Zk)(t) _ Zi:o By il 1) if t <c,

(DK B -1 ifr>¢,

where Ap; and By ; are functions of 4,/ and their derivatives with respective to r.
As t — ¢, we have r — ' and lim /2 —1=0, and it implies

r—r!

lim g%V = lim g**P() =0  and lim g®(r) = lim g® (1) = By.
t—c— t—ct t—c— t—ct
Hence the union of two SSCMC hypersurfaces is smooth at the joint point. O

PROPOSITION 3.19. Suppose that f(r) is a solution of SSCMC equation defined

near r =r_ or r =ry. Then lim |f'(r)] =00 or lim |f/'(r)| = co. Moreover,
r—@r_)t r—>(ry)”

spacelike condition of the SSCMC hypersurface (t = f(r),r,0,¢) still holds near
the coordinate singularities.

Proof: From the formula

N P(r;H,c) 1 I2(r; H, ¢)
= —h()\ 2(r; Hye) =1 |r—r_|lr —rp |V I2(r; H,0) = 17

we know that lim |f/(r)| = co. Spacelike property can be extended at r = ro

r—>(r;):E
because
) ) 1 1
lim (VF,VF) = lim 3 =— 5 <0. O
r—ry r—=rx h([*2 — 1) (_H,-i+c/ri)

4. Characterization of SSCMC hypersurfaces in the extended RN spacetime
From all discussions in Section 3, we are ready to prove the characterization
theorem.

CHARACTERIZATION THEOREM. All SSCMC hypersurfaces in the extended RN
spacetime can be determined by two parameters ¢ and c. In other words, SSCMC
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hypersurfaces in each standard RN coordinates region are determined by two
constants of integration ¢ and ¢, and we can take the same c value and adjust
the value of ¢ such that the union of SSCMC hypersurfaces in the extended RN
spacetime is C' and thus C* smooth.

Here we aim to describe the characterization theorem in more detail. In the
following arguments, we add indices I, II, IIT, I’, II’, and IIT to each constant
of integration to distinguish SSCMC hypersurfaces in different regions. First of all,
we start form an SSCMC hypersurface Xy ;7 in region I to construct a maximally
extended smooth SSCMC hypersurface in the extended RN spacetime. We divide
the construction into three theorems according to the value c1 > riH , C1 = riH ,

or c1 <riH.

THEOREM 4.1. Given constant mean curvature H € R, c1 > rj_H, and c1 € R, it
will determine an SSCMC hypersurface Xy ;& in region I. We can take an SSCMC
hypersurface ¥y e in region II with co = c1 and with some cr determined
by c1 such that g c;e; U ZH e g 15 a smooth SSCMC hypesurface. Furthermore,
suppose that Cy = max Hr3 +r(—r?+2mr — ez)%.

re(r—,ry)

(A) If ¢t > Cpy, then we can take an SSCMC hypersurface Xy e e iR
region I with cmr = c1 and with some ¢ determined by c1 such that
YHerer Y ZHegenr Y ZHeqemm 8 a smooth SSCMC  hypersurface in the
extended RN spacetime.

(B) If c1 = Cy, then Ty e U Zhenen IS a smooth SSCMC  hypersurface
ranging from region 1 to I in the extended RN spacetime.

O If rfrH < c1 < Cy, then we can take an SSCMC hypersurface EH’CI”EI’
in region 1’ with cy = c1 and with some cy determined by c1 such
that Xy cr.e0 Y EH e ég Y EH’CI"EI/ is a smooth SSCMC hypersurface in the
extended RN spacetime.

Proof: The SSCMC hypersurface Xy ;¢ in region Iis (= f(r; H,c1,¢1), 71,6, )

in the standard RN coordinates. Since c1 > rfrH , we know that lim . f(@r) = +oo.
r—(ry)

It implies that Xy ;s Wwill touch the interface of region I and II. Recall that an
SSCMC solution Xy .z in region I is

fi(rs H, c1, &) = /r I(x; H,c1)
r h(x)y/1+P(x; H, cr)

for some initial number ry in region I, and an SSCMC solution X . & in region II
with  lim f(r) = 400 is

r=(r4)”
"ol I>(x; H, cxr) _
fu(r; H,cm, ¢ ):/ dx + ¢,
" Ty =@\ PG H ) — 1 .

where rpp is another initial number in region II.

dX+EI,
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Notice that from Proposition 3.18 (A), (B), and (C), we know that cx > riH .
Here we will find conditions to guarantee that Xy . U Xpeqen 18 C ' smooth
at the joint point. Let f{(r; H,cr) = 1/h(r) + fi(r; H,cr) and fL(r; H,cm) =
1/h(r)+ f;(r; H,cm) near r = r,. By Taylor’s expansion, since

)n

’ ne2
fi= hm e Z( e (1
_h+2 h+(Hr—cI/r2)2 8 (h+(Hr—cI/r2)2)2+”"

1 h

we have

1
lim f .
r— ()t 2(Hry — cI/ri)2
Similarly, since
= 1 2 1+1 1 +1 h N
B —n\ =1 h 2 ht(—Hr+en/r?)? 8 (h+(—Hr+cm/r?)?)? ’
we have |
lim fL = .
r—(r4)” . 2 (—HrJr + c]I/r_%_)z

The C! smoothness condition at r = r, requires

lim fI lim fH = cgp=c1 OF c1 = 2r —c1.
r=(ry)* r=(ry)”

Since ¢ > riH , we get that cg = c1 is the only choice.
Next, we will determine the relation between ¢ and ci. Since

lim tan(V) = lim tan(V)?,
r—>@r4)t r—>(r4)”

it gives that

2 2
exp (a (/ fI(r)dr+rI+ In|r;—ry|— — ln|r1—r_|+51>)

—r_ i

2 2
:exp(a (/ fH(r)dr+rn+ Injrg—ry|——— lnlrﬂ—r_|+(?n)>.

L =7 rp—r_

Since c1 = cmr, we know that the expressions for fI/(r) and fl’:[(r) are the same,

2Here we need to know some relations on the construction of the Penrose diagram of the Reissner—Nordstrom
spacetime, and we refer to [9] for more discussions.
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so we write them as f/ (r). Therefore, we can take

2

ro r 2
= = ! +
cH=c1+/ f'rydr+ (r1 —ro) + In

'z

— ——In
ry —r—

rp —ry

rI—r_‘

ry—r— |rom—ry rmo—r—

such that ¥y ;¢ U Xy cq.éq 18 continuous at the joint point r =r,.
From Proposition 3.18, there are three types of SSCMC hypersurfaces when
c1 > riH .
(A) If ¢1 > Cy, then the next joint point will be » = r_ at the interface of
regions II and III. The SSCMC hypersurfaces g cp e and Xy eqpém
have the behaviour Ilim fg(r) = l%m) fm(r) = —oo. Notice that from

r—@r_)t r—(r—

Proposition 3.4, we know that cmr > r3H. We write the SSCMC solu-

tion as fm(r; H, cmmr, Crm), fiz (s Hyem) = 1/h(r) + fin(r; H, cmm), and
fa(rs Hoem) = 1/h(r) + f(r; Hycxr) near r = r_. The C! smoothness
condition requires

2 2
. = . h Cc c
lim fp= lim fi;= —Hr,—i-—]z:[ = Hr,—lzI = Cm = C11-
r—@_)t r—r-)" r-

The other solution ¢y = 2r3 H — cr is not satisfied because cmp > r> H.

We use lim +tan(‘7) = lim tan(V) to determine ¢, and it gives
r—(r-) r—>r-)"
r— ,,.2 ’,.2
exp(&(/ fh dr+rp+——1Inlrg—ry|——— lnlrn—r_|+En))
I ry—r— rye—r—

r— 2 2
_ r r
= exp(& (/ fn () dr+rm+—+—In|rm—r |————1In |rm—r_|+5m)>.
I Fy—r— ry—r—
When we take cp = crmm, it implies that the expressions for fl’:[(r) and
fiz(r) are the same, so we write them as f’(r). Hence

2 1’2

mo_ r ro—r ro—r
= = / + o—r+ — o—r-
Cm = e+ fr)ydr+(og—rm)+ In — In
I Fy—r— raor—r+ Fy—r— raa—r—
'm r2 ri—r r? ri—r
- r/ + I + — I -
= CI+ f (I") dr+(r1—rm)+ In — In .
r ry—r— Fmo—r+ ry—r— oo —r—

(B) If ¢1 = Cpy, then the SSCMC hypersurface in region IT satisfies lim+ fa(r) =

- r—R
H

—00, S0 Xg crep UXH e e tends to it in the Penrose diagram, not passing
through other regions.

©) It riH < ¢1 < Cy, then the other end of the SSCMC hypersurface Xy o o
in region II satisfies lim fr(r) = —oo, and we will try to take some

r=>(r4)”

SSCMC hypersurface Xy, ¢, in region I’ to glue them.
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Recall the proof of case (C) in Proposition 3.18 and the formulae (4), (5),
if we take the initial number riy, = r”, then Xy . s is the union of two
graphs of functions f(r; H, cm, cx) with the same cxp and cp but with
opposite sign of f’(r; H, cm).

We write the SSCMC solution for f'(r) < O part near r = ri as
fv(ri H,cy,cr), fi,(ri Hocy) = 1/h(r)— f,(r; H, cy), and fr(r; H, co) =
1/h(r) — f4(r; Hycxr). The C ' smoothness condition requires

2 2
. = . = ‘ Ccr
lim f;= lim f;, = (—Hr+—|——2 = (—HI"_;,_-I-—Z = cp = cm.
r—>(r4)” r—>(r4)” ry ry

The other solution ¢y = ZriH — cp is not satisfied because we require
cy > riH by Proposition 3.7.

We use the condition lim tan(U) = Ilim tan(U) to determine cy. Since
r=(r4)t r=(r4)”

+ _ r2 2
—exp(—a(—/ fa(rydr—r"— t  In | - | — 1n|r”—r|+E]1))
! r

+—r— Fy—r—

r+ r2 r2
:—exp(—a (—/ fu(r)ydr—ry— t Inrpy—ry |+ —— ln|r1/—r|+51/)),
o ri—r r
I

+—Fr— ry—r—

and the expressions for f]’:[(r) and fI’,(r) are the same, so we write them
as f'(r), and we have

ry —r4 I’z ryr—r—

= _ = ' r! " I"_%_
cy =ca+ f'rydr+@y—r")+ In
, r re—r_

iU +—r-

4 "
r’—rg r'’—r_

= 51+/ () dr—i—f f'(rydr+@r+rv—2r")
ry rI/

I‘2

+
+
ry—r—

2

(r1—ry)(ry—ry) r- (ri—r)(rrr—r-)

" =r )" =r0) =) =ro) |
Once we know that the SSCMC hypersurface is C' smooth, from the SSCMC equa-

tion (2), we get the union of SSCMC hypersurfaces is C?, and the standard PDE theory
(see [4, Theorem 6.17.] for example) implies that the SSCMC hypersurface is C*°. [J

ry—r—

THEOREM 4.2. Given constant mean curvature H € R, ¢ = riH, and c1 € R, it
will determine an SSCMC hypersurface Xy c; & in region 1. We can take an SSCMC
hypersurface Xy e, in region 1’ with cy = c1 and with some ¢y determined by
cr such that Xy ez U EH’CI”EI’ is a smooth SSCMC hypersurface in the extended
RN spacetime.

Proof: When c¢1 = riH, the orders of fi(r) and f[,(r) near r = r, are

|
O(lr —r4+]|72) such that Ilim f1(r) and lim fy/(r) are finite. In region I, we
r—(ry)t r—(r)t
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observe

2
tan(U) = r—r+exp( ( Py dr + 61— ry + —— 1n|r—r+|>),
r+—r_

2
tan(V) = /r —ry exp< (/ firydr+cr+ry — —— In|r — r+|>),
ry —r—

and
dv v r+
T = j—l’/ = exp (Za/ fi(rydr + 51) .
v r=(r4)* dr r=(ry)t 1

In region I’, we have

r2
tan(U) = —+/r — 14 exp( (f furydr+cy —ry + — In|r — r+|>)

rz
tan(V) = —/r — 4 exp(a(/ furydr+éy+ry — ———1In|r — r+|)),
. ry—r_
I

and
dv v r+
0 = ;{] = exp(Za / fI’/(r) dr + EI/>.
du r=0r4)” dr lr=(rp)— v

Since f{(r) and fI/,(r) have the same expressions, we write them as f'(r). We can
choose rp
cr = c1 + 2« f'(r)ydr

't

such that Xy ;& U ZH,ep 6y is a C! and thus C® SSCMC hypersurface. [l

THEOREM 4.3. Given constant mean curvature H € R, c1 < riH, and c1 € R,
it will determine an SSCMC hypersurface Xy z in region 1. We can take an
SSCMC hypersurface Y Heqs g in region II? with ¢ = c1 and with some cp
determined by c1 such that Xy U Echn/’En/ is a smooth SSCMC hypesurface.
Furthermore, suppose that cy = min Hr? — r(—r? 4+ 2mr — ez)%.

re(r—,ry)

A) If cy <c1 < riH, then we can take an SSCMC hypersurface EH‘CI/’EI/ in
region 1’ with cy = c1 and with some cy determined by c1 such that
YHepep Y ZH’C]I”E]I’ U EH’CI"EI/ is a smooth SSCMC hypersurface in the
extended RN spacetime.

(B) If c1 = cu, then Tyer e U Zphey e s a smooth SSCMC  hypersurface
ranging from 1 to 11’ in the extended RN spacetime.

(O) If c1 < cu, then we can take an SSCMC hypersurface Xy oo e in region
III with ¢ = c1 and with some ¢ determined by c1 such that Yy ;7 U
) Hyepr e Y YHem.em S a smooth SSCMC hypersurface in the extended RN
spacetime.
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The proof of this theorem is similar to the proof in Theorem 4.1. By examining
the Taylor expansions of SSCMC solutions f(r; H, ¢, ¢) near coordinate singularities,
we can get the C' smoothness conditions, and by PDE theory, we prove the C*
smoothness of the extended SSCMC hypersurfaces. Here we summarize the explicit
relations on c:

(A) If ¢1 < r3H, then
mr
cw =+ / F)dr — (rt — ra)
rT
2
-
* In
r+ — r_

ry —ry

ror —ry

and (take ropy =7r")

cy =1 +/ f'rydr —f—/ f'(rydr+ Qr" —rr —rp)
T ry

2
T

Fe —r—
(C) If c1 < cy, then

o
5m=51+/ fl(rydr — (r1 — rm)
T

2
r
— * In
ry —r—

r?
+ In
r+—r_

rr—ry Ty —ri rf—r_ ry—r_

r"—r_ r’"—r_

r" —ry 1’ —rg

r2

+ In
ry —r—

rp —ry

ri —r—
o — r+ ror — r—

Fig. 7 illustrates each case of SSCMC hypersurfaces according to the above
discussion.

it

Theorem 4.1 (A),(B),(C)
Theorem 4.2

Theorem 4.3 (A),(B),(C)

Fig. 7. Left: Given Xy ; in region I, we can construct the extended smooth SSCMC hypersurface in the
extended RN spacetime according to ¢ and ¢. Right: Given Xy . ¢ in different regions, we can also construct
the extended smooth SSCMC hypersurface.
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From Theorems 4.1- 4.3, we construct many extended smooth SSCMC hyper-
surfaces in the extended RN spacetime. If we start from SSCMC hypersurfaces in
different regions, what are new extended smooth SSCMC hypersurfaces? Here we
summarize the results:

(A) We start from an SSCMC hypersurface Xy ;¢ in region IL.

(Al) If ¢cpx > Cy and f'(r) < O in region II, we can extend Xy cq.ip
to regions I’ and III’ and get the extended SSCMC hypersurface
EH.CI/,EI/ U ZH,CH.E‘H U ZH’CIII”EIII/'

(A2) If cp =Cpq and |f'(r)] = oo, then Xp ey is in fact the cylindrical
hypersurface (t,r = Ry, 0, ¢).

(A3) If cp = Cy and |f'(r)| # oo for all r, besides Xy cré; U Zp ep.in
is stated in Theorem 4.1 (B), we can get different types of SSCMC
hypersurface such as EH’CI"EI/ UZXHen.én> ZHem.ég Y 2H,emp,éps and
YHemen Y XH epp ey

(Ad) If r3H < cg < Cy and |f'(r)] # oo for all r, besides YHerer Y
YHem.ég Y ZH’CI”EI/ is stated in Theorem 4.1 (C), another type of
SSCMC hypersurface iS Xy e Y ZHeppég Y Eyycm/’gm,.

(B) We start from an SSCMC hypersurface ¥y ;e in region IIT.

B1) If cm =7 H, we get Ty emom Y SH.egy oy -
(BZ) If cg < cma < VEH, we get EH,CIII-,EIII U EH’CH"E]I’ U EH’C]I[”E]I[/'
(B3) If Crrr = Cyg, WE get EH’Cm’gm U EH‘C]I/’E]I"

SSCMC hypersurfaces starting from regions I’, II’, or III’ can be discussed
by a similar procedure as the one used in Theorems 4.1-4.3. As a remark, here
we provide another viewpoint to construct the SSCMC hypersurface starting from
these regions. For example, we start an SSCMC hypersurface Xy, ¢, in region I’
with coordinate (T = F(X), X, 0, ¢), where X < (0. We use the T-axis symmetry

to get an SSCMC hypersurface Xy ;¢ in region I. In other words, Xy ;& i
def.

of coordinates (T = Fi(X) —= F(—X), X,0,¢), where X > 0, and furthermore,
from the formula of SSCMC solutions, we know that ¢ = ¢y and ¢ = cy. From
Theorems 4.1-4.3, we get the extended smooth SSCMC hypersurface determined by
c1 and cp with coordinates (T = F»>(X), X, 60, ¢), where F>(X) is the extended

smooth function containing Fj(X). Finally, we use the T-axis symmetry again to
def.

get ¥ : (T = F(X) = F,(—X), X,0,¢), which is an extended smooth SSCMC
hypersurface containing ¥y ., in the extended RN spacetime.

5. Initial value problem for SSCMC equation in the extended RN spacetime

In this section, we will first formulate the SSCMC initial value problem as
follows.

SS-CMC INITIAL VALUE PROBLEM. Given H € R, a point (Ty, Xy), and a value
Vo with 1 — VO2 > 0 in the Penrose diagram of the extended RN spacetime with
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the charge smaller than the mass, does there exist a unique function T = T(X)
satisfying the SSCMC equation (2), T(Xo) = To, T'(Xo) = Vo, and 1 —(T'(X))> > 0
for all T(X) is defined?

If the SSCMC initial value problem is true, then ¥ : (T = T(X), X, 60, ¢) is an
SSCMC hypersurface with constant mean curvature H in the extended RN spacetime.
From the discussion in Section 4, we are ready to answer this SSCMC initial value
problem.

MAIN THEOREM. The initial value problem for the spacelike, spherically sym-
metric, constant mean curvature hypersurface equation in the maximally extended
RN spacetime with the charge smaller than the mass is solvable and the solution
is unique.

Proof: Suppose that (T, Xo) is located at (ty, r9) for some RN spacetime in the
standard coordinates region. The initial value problem in the extended RN spacetime
can be equivalently changed as the initial value problem in the standard coordinates
with condition (#9, 7o) and f’(rg) = vo. Remark that vy may be co or —oo if the
initial point is in regions IT or II’. According to the discussion in Section 4, there
exists a unique SSCMC solution f(r; H, ¢, c) satisfying f(ro) =ty and f'(rg) = vy,
and the graph of the function f(r; H,c,c) can be uniquely smoothly extended to
other regions in the maximally extended RN spacetime. Therefore, we have proved
the main theorem. O
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