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We characterize all spacelike and spherically symmetric constant mean curvature hypersur-
faces in the maximally extended Reissner–Nordström spacetimes. These characterizations also
provide a proof of the existence and uniqueness of the initial value problem for the space-
like and spherically symmetric constant mean curvature equation in the maximally extended
Reissner–Nordström spacetimes.
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1. Introduction

Spacelike constant mean curvature (CMC) hypersurfaces in spacetime are interest-
ing and important geometric objects in general relativity. Brill, Cavallo, and Isenberg
proved that a spacelike CMC hypersurface in spacetime has extremal surface area
among fixed enclosed volume [1]. In addition, CMC hypersurfaces are widely used
in the analysis of Einstein constraint equations [3, 6]. In cosmology, CMC foliation
is identified as the absolute time function [16]. Some CMC foliation theory in
cosmological spacetimes can be found in [2, 14]. There are also interesting results
on CMC foliations in spatially noncompact spacetime such as the Schwarzschild
spacetime [7, 8, 12, 13].

In this article we consider spacelike, spherically symmetric, constant-mean cur-
vature hypersurfaces (we use the abbreviation SSCMC hypersurfaces in convenience)
in the maximally extended Reissner–Nordström spacetime. The Reissner–Nordström
spacetime is the simplest nontrivial static solution of the Einstein–Maxwell field
equations. For some physical reasons, cosmic censorship to exclude naked singulari-
ties for example, the Reissner–Nordström spacetime with charge smaller than mass is
much more interesting than other cases, so we will focus on SSCMC hypersurfaces
in this spacetime model.
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This paper will answer the existence and uniqueness of the initial value problem
for the SSCMC equation in the maximally extended Reissner–Nordström spacetime.
Here we state two main results in the following comprehensive way.

CHARACTERIZATION THEOREM. All spacelike and spherically symmetric con-
stant mean curvature hypersurfaces in the maximally extended Reissner–Nordström
spacetime with the charge smaller than the mass can be characterized by two
parameters c and c̄, which are two constants of integration of the solution for the
constant mean curvature equation in the standard Reissner–Nordström coordinates.

MAIN THEOREM. The initial value problem for the spacelike, spherically symmet-
ric, constant mean curvature equation in the maximally extended Reissner–Nordström
spacetime with the charge smaller than the mass is solvable and the solution is unique.

The precise mathematical settings of the characterization theorem and the initial
value problem (main theorem) are discussed in Section 4 and in Section 5, respectively.

Remark that Brill, Cavallo, and Isenberg in [1] gave some general discus-
sions on SSCMC hypersurfaces in spherically symmetric static spacetime. Tuite and
Ó. Murchadha also studied SSCMC hypersurfaces in the Reissner–Nordström space-
time [15]. Compared with these research projects, here we provide different analysis
approaches, dress more geometric insights (figures), and show more properties of
SSCMC hypersurfaces in this topic.

The motivation for studying SSCMC hypersurfaces in such a detailed way is that
we hope to answer the problem of existence of CMC foliations in the Reissner–
Nordström spacetime. In previous experience [7, 8, 10, 11], we have successfully
constructed CMC foliations in the Schwarzschild spacetime. When facing SSCMC
hypersurfaces and CMC foliation problems in the Reissner–Nordström spacetime,
we have to overcome two difficulties. One difficulty is that the Penrose diagram
of the maximally extended Reissner–Nordström spacetime consists of infinite many
Reissner–Nordström spacetime regions. It is more complicated than the Schwarzschild
spacetime (only four regions). We need a thorough discussion on glueing of two
adjacent spacetimes and two adjacent SSCMC hypersurfaces.

The other difficulty is that the Reissner–Nordström spacetime metric has one
more higher-order term in radius part than the Schwarzschild metric. We have to
do some adjustments near the horizon to make sure our approaches also work in
this new model. Fortunately, all SSCMC hypersurfaces can be characterized as well,
and we expect these arguments will give a good understanding on CMC foliation
problems.

The organization of this paper is as follows. We first give a brief introduction to
the maximally extended Reissner–Nordström spacetime in Section 2. In Section 3,
we study SSCMC hypersurfaces in each region and analyze their asymptotic be-
haviours, especially at infinity, coordinate singularities, and spacetime singularities.
The characterization of SSCMC hypersurfaces are discussed in Section 4. We will
set up the initial value problem for the SSCMC equation and prove its existence
and uniqueness in Section 5.
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2. Preliminaries
The Reissner–Nordström (RN) spacetime (L4, ds2) is a time-oriented, four-

dimensional Lorentzian manifold with the metric

ds2
= −

(
1−

2m
r
+
e2

r2

)
dt2 +

1(
1− 2m

r
+

e2

r2

) dr2
+ r2 dθ2

+ r2 sin2 θ dφ2, (1)

where m > 0 is called the mass, and e is called the charge. If e = 0, the spacetime
reduces to the Schwarzschild spacetime.

In this paper, we mainly concentrate on the case e2 < m2. Denote the function

h(r) = 1−
2m
r
+
e2

r2 =
r2
− 2mr + e2

r2 .

The equation r2
−2mr+e2

= 0 has two distinct real roots, called r± = m±
√
m2 − e2.

Although h(r±) = 0 and it looks that the metric (1) has singularities at r = r±,
after coordinates change, we know that r = r± are coordinates singularities. On the
construction of the maximally extended RN spacetime we refer to the note [5, 9]
for more detailed discussions. Here we only describe the structure of the Penrose
diagram of the maximally extended RN spacetime in Fig. 1.
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where m > 0 is called the mass, and e is called the charge. If e = 0, the spacetime
reduces to the Schwarzschild spacetime.

In this paper, we mainly concentrate on the case e2 < m2. Denote the function
h(r) = 1 − 2m

r + e2

r2 = r2−2mr+e2

r2 . The equation r2 − 2mr + e2 = 0 has two distinct
real roots, called r± = m±

√
m2 − e2. Although h(r±) = 0 and it looks that the metric

(1) has singularities at r = r±, after coordinates change, we know that r = r± are
coordinates singularities. On the construction of the maximally extended RN spacetime
we refer to the note [9] or [5] for more detail discussions. Here we only describe the
structure of the Penrose diagram of the maximally extended RN spacetime in Fig. 1.
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Fig. 1: Penrose diagram for the maximally extended RN spacetime with e2 < m2.

To construct this diagram, first we take one family of RN spacetimes. Each spacetime
in this family is divided into three regions r > r+, r− < r < r+, and 0 < r < r−
in the standard coordinates (t, r, θ, φ). There is one-to-one and onto correspondence
from r > r+ to region I, from r− < r < r+ to region II, and from 0 < r < r− to
region III, respectively. In the Penrose diagram, the spacetime metric can be smoothly
extended at the interface of region I and II, or region II and III. Next, taking another
family of RN spacetimes, and we establish and label the correspondence from three
regions r > r+, r− < r < r+, 0 < r < r− of each RN spacetime to regions I’, II’, and
III’, respectively. Notice that we choose opposite timelike direction in the coordinates
(t, r, θ, φ) for the second family of RN spacetimes. The maximally extended RN spacetime
is constructed by gluing two families of RN spacetimes consecutively at r+ for I and II’,
or I’ and II; at r− for II and III’, or III and II’, respectively.

In this article, we will set (T,X) coordinates as in Fig. 1 and then choose ∂T as
future directed timelike vector field of the maximally extended RN spacetime in this
article. The metric of the maximally extended RN spacetime can be formally written as

ds2 = P 2(T,X)(−dT 2 + dX2) + r2 dθ2 + r2 sin2 θ dφ2,

where P (T,X) is a smooth function and of nonlinear relations with r and t.

Fig. 1. Penrose diagram for the maximally extended RN spacetime with e2 < m2.

To construct this diagram, first we take one family of RN spacetimes. Each
spacetime in this family is divided into three regions r > r+, r− < r < r+, and
0 < r < r− in the standard coordinates (t, r, θ, φ). There is one-to-one and onto
correspondence from r > r+ to region I, from r− < r < r+ to region II, and
from 0 < r < r− to region III, respectively. In the Penrose diagram, the spacetime
metric can be smoothly extended at the interface of region I and II, or region
II and III. Next, taking another family of RN spacetimes, we establish and label
the correspondence from three regions r > r+, r− < r < r+, 0 < r < r− of each
RN spacetime to regions I’, II’, and III’, respectively. Notice that we choose
opposite timelike direction in the coordinates (t, r, θ, φ) for the second family of
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RN spacetimes. The maximally extended RN spacetime is constructed by gluing
two families of RN spacetimes consecutively at r+ for I and II’, or I’ and II;
at r− for II and III’, or III and II’, respectively.

In this article, we will set (T ,X) coordinates as in Fig. 1 and then choose ∂T
as future-directed timelike vector field of the maximally extended RN spacetime.
The metric of the maximally extended RN spacetime can be formally written as

ds2
= P 2(T ,X)(−dT 2

+ dX2)+ r2 dθ2
+ r2 sin2 θ dφ2,

where P(T ,X) is a smooth function and of nonlinear relations with r and t .
Let 6 : (T = F(X),X, r, θ) be an SSCMC hypersurface. The spacelike condition

is equivalent to (F ′(X))2 < 1, and the mean curvature equation will be

F ′′ + (1− (F ′)2)
(

2rT
r
+
PT

P
+

(
rX

r
+
PX

P

)
F ′
)
− 3HP(1− (F ′)2)

3
2 = 0, (2)

where F ′ = F ′(X), F ′′ = F ′′(X), and the subscription means the partial derivative
with respect to the variable. The computation of this equation is derived in the
note [9] and we skip the computation here.

Our goal in this article is to analyze solutions of Eq. (2) for constant
mean curvature H . However, since functions r = r(T ,X) = r(F (X),X) and
P = P(T ,X) = P(F(X),X) are of complicated nonlinear relations with T = F(X)
and X, it is not easy to characterize solutions through Eq. (2). Instead, we will start
from the SSCMC equation in the standard coordinates (t, r, θ, φ) of the RN spacetime
to explore the properties of SSCMC hypersurfaces in the standard coordinates and
then discuss the relations between the coordinates (t, r, θ, φ) and (T ,X, θ, φ).

As a remark, when we analyze SSCMC hypersurfaces in Section 4, we use (U, V )
and (Ū , V̄ ) coordinates. They both have linear relations with respect to (X, T )
coordinates by U = X− T , V = X+ T , and Ū = X− T + π/2, V̄ = X+ T + π/2.
Fig. 1 also shows the UV and Ū V̄ -axes. More discussions on coordinates changes
can be found in the note [9].

3. SSCMC equation in Reissner–Nordström (t, r, θ, φ) coordinates
Assume that an SSCMC hypersurface 6 in the standard RN spacetime coordinates

is of the form (t = f (r), r, θ, φ). We are going to derive the SSCMC equation. The
advantage of this process is that the SSCMC equation in standard coordinates and
the solution have an explicit expression so that we can analyze the behaviour of
SSCMC hypersurfaces at infinity, coordinate singularities, and spacetime singularities.

There are six different regions in the maximally extended RN spacetime. In the
following subsections, we first deal with the SSCMC equation in region I and III,
and then analyze asymptotic behaviours of SSCMC hypersurfaces at r = ∞, r+, r−,
and 0. All SSCMC hypersurfaces in region I’ and III’ are similarly treated. The
SSCMC equation in region II needs more discussions because ∂r becomes timelike
and ∂t becomes spacelike. Although ∂t and ∂r change type, all SSCMC solutions
can be characterized as well.
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3.1. SSCMC hypersurfaces in region I and region III

PROPOSITION 3.1. Suppose that 6 : (t = f (r), r, θ, φ) is an SSCMC hypersurface
in the RN spacetime which maps to the region I or III. The mean curvature equation
is

f ′′ +

((
1
h
− (f ′)2h

)(
2h
r
+
h′

2

)
+
h′

h

)
f ′ − 3H

(
1
h
− (f ′)2h

) 3
2
= 0,

where

h(r) = 1−
2m
r
+
e2

r2

and H is the constant mean curvature. The solution is

f ′(r;H, c) =
l(r;H, c)

h(r)
√

1+ l2(r;H, c)
, where l(r;H, c) =

1
√
h(r)

(
Hr −

c

r2

)
,

for some constant of integration c. After integration it gives

f (r;H, c, c̄) =

∫ r

rini

l(x;H, c)

h(x)
√

1+ l2(x;H, c)
dx + c̄,

where c̄ is another constant and rini is an initial number.

Proof: Consider F(t, r, θ, φ) = −t + f (r) and let 6 be a level set of the
function F . We compute

∇F =
1
h(r)

∂t + f
′(r)h(r)∂r .

The spacelike condition of 6 is equivalent to

−
1
h(r)
+ (f ′(r))2h(r) < 0⇔ (f ′(r)h(r))2 < 1.

Since we require ∂T be the future-directed timelike vector field in the extended RN
spacetime, we choose

e4 =
∇F

√
−〈∇F,∇F 〉

=

(
1
h(r)
, h(r)f ′(r), 0, 0

)
√

1
h(r)
− (f ′(r))2h(r)

as the future-directed unit timelike normal vector in region I or region III. Next,
we choose an orthonormal frame on Tp6:

e1 =
(0, 0, 1, 0)

r
, e2 =

(0, 0, 0, 1)
r sin θ

, e3 =
(f ′(r), 1, 0, 0)√
1
h(r)
− (f ′(r))2h(r)

.
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By direct computation, the second fundamental form of 6 in (L4, ds2) will be

h11 = h22 =
1(

1/h− (f ′)2h
) 1

2

hf ′

r
,

h33 =
1(

1/h− (f ′)2h
) 1

2

(
1

1/h− (f ′)2h

(
f ′′ +

h′f ′

h

)
+
h′f ′

2

)
,

and hij = 0 for i 6= j . Hence the mean curvature equation becomes

f ′′ +

((
1
h
− (f ′)2h

)(
2h
r
+
h′

2

)
+
h′

h

)
f ′ − 3H

(
1
h
− (f ′)2h

) 3
2
= 0. (3)

To solve f (r), we set the substitution sin(η(r)) = f ′(r)h(r), then Eq. (3) becomes

(tan η)′ +
(

2
r
+
h′

2h

)
tan η − 3H

(
1

h
1
2

)
= 0⇒ tan η =

1
√
h(r)

(
Hr −

c

r2

)
,

where c is a constant of integration.1
Next, we write

l(r;H, c) =
1
√
h(r)

(
Hr −

c

r2

)
= tan η

for convenience. Since sin η = f ′h implies

tan η =
f ′h√

1− (f ′h)2
,

we get
f ′ =

l

h
√

1+ l2
,

so

f (r;H, c, c̄) =

∫ r

rini

l(x;H, c)

h(x)
√

1+ l2(x;H, c)
dx + c̄,

where c̄ is a constant and rini is an initial number. The solution is defined on the
connected coordinates region I or region III. �

Next, we will discuss asymptotic behaviours of SSCMC hypersurfaces.

PROPOSITION 3.2. For an SSCMC hypersurface 6 : (t = f (r), r, θ, φ) mapping
to region I of the maximally extended RN spacetime, the following results hold:

(A) If H > 0, then lim
r→∞

f ′(r) = 1 and 6 is asymptotically null.

1We multiply the integrating factor r2h
1
2 and get (r2h

1
2 tan η)′ = 3Hr2, so r2h

1
2 tan η = Hr3

− c. Here
we choose the constant of integration −c in order to have a better expression when discussing the smoothness
of SSCMC hypersurfaces.
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(B) If H = 0, then lim
r→∞

f ′(r) = 0 and 6 is asymptotically spacelike.

(C) If H < 0, then lim
r→∞

f ′(r) = −1 and 6 is asymptotically null.

Proof: We observe the leading order of f ′(r),

f ′(r) =
l(r;H, c)

h(r)
√

1+ l2(r;H, c)

=
Hr − c/r2

(1− 2m/r + e2/r2)

√
1− 2m/r + e2/r2 +

(
Hr − c/r2

)2
.

When computing the square of the length of the timelike normal vector

〈∇F,∇F 〉 = −
1
h(r)
+ h(r)(f ′(r))2 = −

1
1− 2m/r + e2/r2 + (Hr − c/r2)2

,

we know that lim
r→∞
〈∇F,∇F 〉 = 0 if H 6= 0, and lim

r→∞
〈∇F,∇F 〉 = −1 if H = 0.

Hence 6 is asymptotically null for H 6= 0 and asymptotically spacelike for H = 0.
�

PROPOSITION 3.3. For an SSCMC hypersurface 6 : (t = f (r), r, θ, φ) mapping
to region I of the extended RN spacetime, the following conclusions hold:

(A) If c > r3
+
H , then f ′(r) < 0 near r = r+ and lim

r→(r+)+
f (r) = ∞.

(B) If c = r3
+
H , then H · f ′(r) ≥ 0 near r = r+ and lim

r→(r+)+
f (r) is finite.

(C) If c < r3
+
H , then f ′(r) > 0 near r = r+ and lim

r→(r+)+
f (r) = −∞.

Furthermore, the spacelike condition of 6 is preserved as r → (r+)
+ for all c ∈ R.

Proof: From the formula

f ′(r) =
Hr − c/r2

h(r)
√
h(r)+ (Hr − c/r2)2

=
(Hr3

− c)r2

(r − r+)(r − r−)
√
r2(r − r+)(r − r−)+ (Hr3 − c)2

,

since 6 maps to region I, the denominator is always positive, so the sign of f ′(r)
is determined by the sign of Hr3

− c.

(A) If c> r3
+
H , f ′(r)∼O((r−r+)−1) and f ′(r)< 0 near r+, so lim

r→(r+)+
f (r)=∞.

(B) If c = r3
+
H , then

f ′(r;H, c) =
H(r−r+)(r

2
+rr++r

2
+
)r2

(r−r+)(r−r−)

√
r2(r−r+)(r−r−)+(r−r+)2(r2+rr++r

2
+)

2
.
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Since f ′(r) ∼ O((r − r+)
−

1
2 ) if H 6= 0 and the sign of f ′(r) is the same

as the sign of H , so lim
r→(r+)+

f (r) is finite. If H = 0, then f ′(r) = 0 and

f (r) = c̄ is a constant.
(C) If c<r3

+
H , f ′(r)∼O((r−r+)−1) and f ′(r)>0 near r+, so lim

r→(r+)+
f (r)=−∞.

Next, we look at

〈∇F,∇F 〉 = −
1

1−2m/r+e2/r2+(Hr−c/r2)2
= −

r4

r2(r−r+)(r−r−)+(Hr3−c)2
.

If c 6= r3
+
H , then

lim
r→(r+)+

〈∇F,∇F 〉 = −
r4
+

(Hr3
+ − c)

2
< 0,

so the hypersurface is spacelike. If c = r3
+
H , then

lim
r→(r+)+

〈∇F,∇F 〉 = lim
r→(r+)+

−
r4

r2(r−r+)(r−r−)+H 2(r−r+)2(r2+r+r+r
2
+)

2
= −∞,

so the hypersurface is spacelike as well. �

PROPOSITION 3.4. For an SSCMC hypersurface 6 : (t = f (r), r, θ, φ) mapping
to region III of the extended RN spacetime, the following conclusions hold:

(A) If c > r3
−
H , then f ′(r) < 0 near r = r− and lim

r→(r−)−
f (r) = −∞.

(B) If c = r3
−
H , then H · f ′(r) ≤ 0 near r = r− and lim

r→(r−)−
f (r) is finite.

(C) If c < r3
−
H , then f ′(r) > 0 near r = r− and lim

r→(r−)−
f (r) = ∞.

Furthermore, the spacelike condition of 6 is preserved as r → (r−)
− for all c ∈ R.

Proof: From the formula

f ′(r) =
Hr−c/r2

h(r)
√
h(r)+(Hr−c/r2)2

=
(Hr3

−c)r2

(r−r+)(r−r−)
√
r2(r−r+)(r−r−)+(Hr3−c)2

,

since 6 maps to the region III, we know that (r − r+)(r − r−) > 0, so the sign
of f ′(r) is determined by the sign of Hr3

− c.

(A) If c > r3
−
H , f ′(r) ∼ O((r−r−)−1) and f ′(r) < 0 near r−, so lim

r→(r−)−
f (r) =

−∞.
(B) If c = r3

−
H , then

f ′(r;H, c) =
H(r−r−)(r

2
+rr−+r

2
−
)r2

(r−r+)(r−r−)

√
r2(r−r+)(r−r−)+(r−r−)2(r2+rr−+r

2
−)

2
,
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f ′(r) ∼ O((r − r−)
−

1
2 ) if H 6= 0 and the sign of f ′(r) is the same as

the sign of −H , so lim
r→(r−)−

f (r) is finite. If H = 0, then f ′(r) = 0, and

f (r) = c̄ is a constant.
(C) If c< r3

−
H , f ′(r)∼O((r−r−)−1) and f ′(r)> 0 near r−, so lim

r→(r−)−
f (r)=∞.

Next, we compute

〈∇F,∇F 〉 = −
1

1−2m/r+e2/r2+(Hr−c/r2)2
= −

r4

r2(r−r+)(r−r−)+(Hr3−c)2
.

If c 6= r3
−
H , then

lim
r→(r−)+

〈∇F,∇F 〉 = −
r4
−

(Hr3
− − c)

2
< 0,

so the hypersurface is spacelike. If c = r3
−
H , then

lim
r→(r−)+

〈∇F,∇F 〉 = lim
r→(r−)+

−
r4

r2(r−r+)(r−r−)+H 2(r−r−)2(r2+r−r+r
2
−)

2
= −∞

also implies that the hypersurface is spacelike. �

PROPOSITION 3.5. For every H ∈ R, lim
r→0+

f ′(r) is finite for all c ∈ R so that

all SSCMC hypersurfaces in region III will touch the spacetime singularity r = 0.

Proof: We observe the leading order of f ′(r),

f ′(r) =
l(r;H, c)

h(r)
√

1+ l2(r;H, c)
=

Hr3
− c

(r2 − 2mr + e2)
√
r2(r2 − 2mr + e2)+ (Hr3 − c)2

.

If c 6= 0, then

lim
r→0+

f ′(r) = −
c

e2
√
(−c)2

= −
c

e2|c|
= −

1
e2 · sgn(c)

is finite. If c = 0, then

lim
r→0+

f ′(r) = lim
r→0+

Hr2

(r2 − 2mr + e2)
√
r2 − 2mr + e2 +H 2r4

= 0. �

Fig. 2 illustrates the correspondence of SSCMC hypersurfaces between standard
coordinates (t, r, θ, φ) and (T ,X, θ, φ).

3.2. SSCMC hypersurfaces in region I’ and region III’
Recall the construction of the maximally extended RN spacetime. Since regions

I’ and III’ come from second family of RN spacetime combining together with
first family of RN spacetime in upside-down way, ∂t direction points past direction.
It implies that an SSCMC hypersurface of the form (t = f (r), r, θ, φ) has opposite
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Fig. 2: SSCMC hypersurfaces with H > 0 in region I and III.

curvature when it maps to prime regions or non-prime regions. Therefore, we can get
SSCMC hypersurfaces in region I’ and III’ by changing the sign of the mean curvature
in reigon I and III.

Here we summarize SSCMC solutions in region I’ and III’. The constant mean cur-
vature equation of an SSCMC hypersurface Σ : (t = f(r), r, θ, φ) which maps to region
I’ or region III’ of the maximally extended RN spacetime is

f ′′ +

((
1

h
− (f ′)2h

)(
2h

r
+

h′

2

)
+

h′

h

)
f ′ + 3H

(
1

h
− (f ′)2h

) 3
2

= 0.

The solution is f ′(r;H, c) = l(r;H,c)

h(r)
√

1+l2(r;H,c)
, where l(r;H, c) = 1√

h(r)

(
−Hr + c

r2

)
and

f(r;H, c, c̄) =

∫ r

rini

l(x;H, c)

h(x)
√

1 + l2(x;H, c)
dx+ c̄,

where c and c̄ are constants, and rini is an initial number.
Next, we can conclude and summarize asymptotic behaviors of SSCMC hypersurfaces

in region I’ and III’.

Proposition 3.6. For an SSCMC hypersurface Σ : (t = f(r), r, θ, φ) mapping to region
I’ of the maximally extended RN spacetime, the following results hold:

(A) If H > 0, then lim
r→∞

f ′(r) = −1 and Σ is asymptotically null.

(B) If H = 0, then lim
r→∞

f ′(r) = 0 and Σ is asymptotically spacelike.

(C) If H < 0, then lim
r→∞

f ′(r) = 1 and Σ is asymptotically null.

Proposition 3.7. For an SSCMC hypersurface Σ : (t = f(r), r, θ, φ) mapping to region
I’ of the maximally extended RN spacetime, the following conclusions hold:

Fig. 2. SSCMC hypersurfaces with H > 0 in region I and III.

sign of the mean curvature when it maps to prime regions or nonprime regions.
Therefore, we can get SSCMC hypersurfaces in region I’ and III’ by changing
the sign of the mean curvature in reigon I and III.

Here we summarize SSCMC solutions in regions I’ and III’. The constant mean
curvature equation of an SSCMC hypersurface 6 : (t = f (r), r, θ, φ) which maps to
region I’ or region III’ of the maximally extended RN spacetime is

f ′′ +

((
1
h
− (f ′)2h

)(
2h
r
+
h′

2

)
+
h′

h

)
f ′ + 3H

(
1
h
− (f ′)2h

) 3
2
= 0.

The solution is
f ′(r;H, c) =

l(r;H, c)

h(r)
√

1+ l2(r;H, c)
,

where
l(r;H, c) =

1
√
h(r)

(
−Hr +

c

r2

)
and

f (r;H, c, c̄) =

∫ r

rini

l(x;H, c)

h(x)
√

1+ l2(x;H, c)
dx + c̄,

where c and c̄ are constants, and rini is an initial number.
Next, we can conclude and summarize asymptotic behaviours of SSCMC hyper-

surfaces in regions I’ and III’.

PROPOSITION 3.6. For an SSCMC hypersurface 6 : (t = f (r), r, θ, φ) mapping
to region I’ of the maximally extended RN spacetime, the following results hold:

(A) If H > 0, then lim
r→∞

f ′(r) = −1 and 6 is asymptotically null.

(B) If H = 0, then lim
r→∞

f ′(r) = 0 and 6 is asymptotically spacelike.

(C) If H < 0, then lim
r→∞

f ′(r) = 1 and 6 is asymptotically null.
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PROPOSITION 3.7. For an SSCMC hypersurface 6 : (t = f (r), r, θ, φ) mapping
to region I’ of the maximally extended RN spacetime, the following conclusions
hold:

(A) If c > r3
+
H , then f ′(r) > 0 near r = r+ and lim

r→(r+)+
f (r) = −∞.

(B) If c = r3
+
H , then H · f ′(r) ≤ 0 near r = r+ and lim

r→(r+)+
f (r) is finite.

(C) If c < r3
+
H , then f ′(r) < 0 near r = r+ and lim

r→(r+)+
f (r) = ∞.

Furthermore, the spacelike condition of 6 is preserved as r → (r+)
+ for all c ∈ R.

PROPOSITION 3.8. For an SSCMC hypersurface 6 : (t = f (r), r, θ, φ) mapping
to region III’ of the maximally extended RN spacetime, the following conclusions
hold:

(A) If c > r3
−
H , then f ′(r) > 0 near r = r− and lim

r→(r−)−
f (r) = ∞.

(B) If c = r3
−
H , then H · f ′(r) ≥ 0 near r = r− and lim

r→(r−)−
f (r) is finite.

(C) If c < r3
−
H , then f ′(r) < 0 near r = r− and lim

r→(r−)−
f (r) = −∞.

Furthermore, the spacelike condition of 6 is preserved as r → (r−)
− for all c ∈ R.

PROPOSITION 3.9. For every H ∈ R, lim
r→0+

f ′(r) is finite for all c ∈ R so that

all SSCMC hypersurfaces in region III’ will touch the spacetime singularity r = 0.

Kuo-Wei Lee; Initial value problem for the CMC equation in the Reissner-Nordström spacetime 10

(A) If c > r3+H, then f ′(r) > 0 near r = r+ and lim
r→(r+)+

f(r) = −∞.

(B) If c = r3+H, then H · f ′(r) ≤ 0 near r = r+ and lim
r→(r+)+

f(r) is finite.

(C) If c < r3+H, then f ′(r) < 0 near r = r+ and lim
r→(r+)+

f(r) = ∞.

Furthermore, the spacelike condition of Σ is preserved as r → (r+)
+ for all c ∈ R.

Proposition 3.8. For an SSCMC hypersurface Σ : (t = f(r), r, θ, φ) mapping to region
III’ of the maximally extended RN spacetime, the following conclusions hold:

(A) If c > r3−H, then f ′(r) > 0 near r = r− and lim
r→(r−)−

f(r) = ∞.

(B) If c = r3−H, then H · f ′(r) ≥ 0 near r = r− and lim
r→(r−)−

f(r) is finite.

(C) If c < r3−H, then f ′(r) < 0 near r = r− and lim
r→(r−)−

f(r) = −∞.

Furthermore, the spacelike condition of Σ is preserved as r → (r−)− for all c ∈ R.
Proposition 3.9. For every H ∈ R, lim

r→0+
f ′(r) is finite for all c ∈ R so that all SSCMC

hypersurfaces in region III’ will touch the spacetime singularity r = 0.
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Fig. 3: SSCMC hypersurfaces with H > 0 in region I’ and III’.

Fig. 3 illustrates SSCMC hypersurfaces between standard coordinates (t, r, θ, φ) and
(T,X, θ, φ) in region I’ and III’.

3.3 Cylindrical hypersurfaces in region II

In the RN spacetime region II, because h(r) = 1− 2m
r + e2

r2 < 0, we know that −∂r is
future directed timelike and ∂t is spacelike. To find SSCMC hypersurfaces in region II,
we may first assume that Σ is of the form (t, r = g(t), θ, φ) for some function r = g(t).

First of all, we can get cylindrical hypersurfaces. This result is known in [15], so we
skip the proof here. We also refer to [9] for further explain.

Fig. 3. SSCMC hypersurfaces with H > 0 in regions I’ and III’.

Fig. 3 illustrates SSCMC hypersurfaces between standard coordinates (t, r, θ, φ)
and (T ,X, θ, φ) in regions I’ and III’.

3.3. Cylindrical hypersurfaces in region II
In the RN spacetime region II, because h(r) = 1− 2m/r + e2/r2 < 0, we know

that −∂r is future directed timelike and ∂t is spacelike. To find SSCMC hypersurfaces
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in region II, we may first assume that 6 is of the form (t, r = g(t), θ, φ) for
some function r = g(t).

First of all, we can get cylindrical hypersurfaces. This result is known in [15],
so we skip the proof here. We also refer to [9] for further explanations.

PROPOSITION 3.10. [15] Each constant slice r = r0, r0 ∈ (r−, r+) in region II
is an SSCMC hypersurface with mean curvature

H(r0) =
2r2

0 − 3mr0 + e2

3r2
0

√
−r2

0 + 2mr0 − e2
.

We say r = r0, r0 ∈ (r−, r+) is a cylindrical hypersurface.

Next, we have to prove more properties on cylindrical hypersurfaces as the
following ones.

PROPOSITION 3.11. For all m2 > e2 > 0, the function

H(r) =
2r2
− 3mr + e2

3r2
√
−r2 + 2mr − e2

is an increasing function on (r−, r+). Furthermore, cylindrical hypersurfaces r =
r0, r0 ∈ (r−, r+) have the following properties:

(A) If r0 ∈ (r−, (3m+
√

9m2 − 8e2)/4), then H(r0) < 0 and lim
r→(r−)+

H(r) = −∞.

(B) If r0 = (3m+
√

9m2 − 8e2)/4, then H(r0) = 0 is a maximal hypersurface.
(C) If r0 ∈ ((3m+

√
9m2 − 8e2)/4, r+), then H(r0) > 0 and lim

r→(r+)−
H(r) = ∞.

Proof: First of all, we will prove that H(r) is increasing. Direct computation
gives

H ′(r) =
2r4
− 8mr3

+ 9m2r2
+ 3e2r2

− 8e2mr + 2e4

3r3(−r2 + 2mr − e2)
3
2

.

We will show that H ′(r) > 0 for all m2 > e2 > 0 on (r−, r+). Let

p(r) = 2r4
− 8mr3

+ 9m2r2
+ 3e2r2

− 8e2mr + 2e4

defined on [r−, r+]. It suffices to show that the absolute minimum value of p(r)
on [r−, r+] is positive.

Since
p′(r) = 8r3

− 24mr2
+ 18m2r + 6e2r − 8e2m,

there are at most three critical points of p(r) on [r−, r+]; that is, there are at most
three real roots ri , i = 1, 2, 3 satisfying p′(ri) = 0 on [r−, r+]. Since

p(r) = p′(r)Q(r)+
(m2
− e2)

2
(−3r2

+ 9mr − 4e2),
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we have

p(ri) =
(m2
− e2)

2
(−3r2

i + 9mri − 4e2).

The polynomial

p̃(r) = −3r2
+ 9mr − 4e2

= −3
(
r −

3
2
m

)2

+
27
4
m2
− e2

satisfies

p̃(r±) = 3mr± − e2
= 3m2

− e2
± 3m

√
m2 − e2 =

e2
+ 3m2e2

3m2 − e2 ∓ 3m
√
m2 − e2

> 0,

so p̃(r) > 0 on (r−, r+). It implies that all critical points ri in the interval (r−, r+)
must satisfy p(ri) > 0. In addition, we have p(r±) = 2m(m2

−e2)r±+e
2(m2
−e2) > 0.

Thus, the absolute minimum value of p(r) on [r−, r+] must be positive, and hence
H ′(r) > 0.

Since H(r) is increasing, H(r) = 0 has a unique solution

r =
3m+

√
9m2 − 8e2

4
in the interval (r−, r+). Here we remark that

r =
3m−

√
9m2 − 8e2

4
< r−.

Since

lim
r→r±

H(r) = lim
r→r±

2r2
− 3mr + e2

3r2
√
−(r − r+)(r − r−)

= ±∞,

all properties stated in Proposition 3.11 are characterized. �Kuo-Wei Lee; Initial value problem for the CMC equation in the Reissner-Nordström spacetime 12
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Fig. 4: Cylindrical hypersurfaces in region II.

From the above argument, we can plot cylindrical hypersurfaces in region II as Fig 4.

3.4 Noncylindrical SSCMC hypersurfaces in region II

For r = g(t) 6= constant, we piecewisely consider its inverse function t = f(r) with
f ′(r) 6= 0 whenever it is defined. Here we allow f ′(r) = ∞ or −∞ because they corre-
spond to g′(t) = 0 at some point.

Proposition 3.12. Suppose that Σ : (t = f(r), r, θ, φ) is an SSCMC hypersurface in the
RN spacetime which maps to the region II. Then

f ′(r) =





1

−h(r)

√
l2(r;H, c)

l2(r;H, c) − 1
if f ′ > 0

1

h(r)

√
l2(r;H, c)

l2(r;H, c) − 1
if f ′ < 0,

where l(r;H, c) =
1√

−h(r)

(
−Hr +

c

r2

)
.

The integration of f ′(r) gives

f(r;H, c, c̄) =

∫ r

rini

1

−h(x)

√
l2(x;H, c)

l2(x;H, c) − 1
dx+ c̄, or (4)

f(r;H, c, c̄) =

∫ r

rini

1

h(x)

√
l2(x;H, c)

l2(x;H, c)− 1
dx+ c̄ (5)

according to the sign of f ′(r), where rini is an initial number, and c, c̄ are two constants.

The proof of Proposition 3.12 is similar to the proof of Proposition 3.1. We refer to
the note [9] for the complete proof of this proposition.

3.5 Cylindrical hypersurfaces in region II’

Proposition 3.13. [15] Each constant slice r = r0, r0 ∈ (r−, r+) is an SSCMC hyper-

Fig. 4. Cylindrical hypersurfaces in region II.

From the above argument, we can plot cylindrical hypersurfaces in region II as
Fig 4.
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3.4. Noncylindrical SSCMC hypersurfaces in region II
For r = g(t) 6= constant, we piecewisely consider its inverse function t = f (r)

with f ′(r) 6= 0 whenever it is defined. Here we allow f ′(r) = ∞ or −∞ because
they correspond to g′(t) = 0 at some point.

PROPOSITION 3.12. Suppose that 6 : (t = f (r), r, θ, φ) is an SSCMC hypersurface
in the RN spacetime which maps to the region II. Then

f ′(r)=


1
−h(r)

√
l2(r;H, c)

l2(r;H, c)−1
if f ′> 0,

1
h(r)

√
l2(r;H, c)

l2(r;H, c)−1
if f ′< 0,

where l(r;H, c)=
1

√
−h(r)

(
−Hr+

c

r2

)
.

The integration of f ′(r) gives

f (r;H, c, c̄) =

∫ r

rini

1
−h(x)

√
l2(x;H, c)

l2(x;H, c)− 1
dx + c̄, or (4)

f (r;H, c, c̄) =

∫ r

rini

1
h(x)

√
l2(x;H, c)

l2(x;H, c)− 1
dx + c̄, (5)

according to the sign of f ′(r), where rini is an initial number, and c, c̄ are two
constants.

The proof of Proposition 3.12 is similar to the proof of Proposition 3.1. We
refer to the note [9] for the complete proof of this proposition.

3.5. Cylindrical hypersurfaces in region II’
PROPOSITION 3.13. [15] Each constant slice r = r0, r0 ∈ (r−, r+) is an SSCMC

hypersurface (called cylindrical hypersurface) with mean curvature

H(r0) = −
2r2

0 − 3mr0 + e2

3r2
0

√
−r2

0 + 2mr0 − e2
.

PROPOSITION 3.14. For all m2 > e2 > 0, the function

H(r) =
2r2
− 3mr + e2

3r2
√
−r2 + 2mr − e2

is a decreasing function on (r−, r+). Furthermore, cylindrical hypersurfaces r =
r0, r0 ∈ (r−, r+) have the following properties:

(A) If r0 ∈ (r−, (3m+
√

9m2 − 8e2)/4), then H(r0) > 0 and lim
r→(r−)+

H(r) = ∞.
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(B) If r0 = (3m+
√

9m2 − 8e2)/4, then H(r0) = 0 is a maximal hypersurface.
(C) If r0 ∈ ((3m+

√
9m2 − 8e2)/4, r+), then H(r0) < 0 and lim

r→(r+)−
H(r) = −∞.

3.6. Noncylindrical SSCMC hypersurfaces in region II’

For r = g(t) 6= constant, we piecewisely consider its inverse function t = f (r)
with f ′(r) 6= 0 whenever it is defined. Here we allow f ′(r) = ∞ or −∞ because
they correspond to g′(t) = 0 at some point.

PROPOSITION 3.15. Suppose that 6 : (t = f (r), r, θ, φ) is an SSCMC hypersurface
in the RN spacetime which maps to the region II’. Then

f ′(r)=


1
−h(r)

√
l2(r;H, c)

l2(r;H, c)−1
if f ′> 0,

1
h(r)

√
l2(r;H, c)

l2(r;H, c)−1
if f ′< 0,

where l(r;H, c)=
1

√
−h(r)

(
Hr−

c

r2

)
.

The integration of f ′(r) gives

f (r;H, c, c̄) =

∫ r

rini

1
−h(x)

√
l2(x;H, c)

l2(x;H, c)− 1
dx + c̄, or (6)

f (r;H, c, c̄) =

∫ r

rini

1
h(x)

√
l2(x;H, c)

l2(x;H, c)− 1
dx + c̄, (7)

according to the sign of f ′(r), where rini is an initial number, and c, c̄ are two
constants.

3.7. Position of the SSCMC hypersurfaces in region II and region II’

Spacelike condition of an SSCMC hypersurface in region II in fact restricts the
domain of f (r) in region II; that is, from the formula

l(r;H, c) =
1

√
−h(r)

(
−Hr +

c

r2

)
> 1⇔ c > Hr3

+ r(−r2
+ 2mr − e2)

1
2 ,

we consider a function k(r;H) = Hr3
+ r(−r2

+ 2mr − e2)
1
2 defined on (r−, r+),

then the domain of f (r) in region II will be

{r ∈ (r−, r+)| k(r;H) < c} ∪ {r ∈ (r−, r+)| k(r;H) = c and f (r) is finite}.

At first, we can describe the function k(r;H) as follows.

PROPOSITION 3.16. Fixed H ∈ R, the function k(r;H) has a unique maximum
point at r = RH , where r = RH is a cylindrical hypersurface with mean curvature H .
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Proof: Direct computation gives (the prime means to take derivative with respect
to r)

k′(r;H) = 3Hr2
+ (−r2

+ 2mr − e2)
1
2 + r ·

1
2
(−r2

+ 2mr − e2)−
1
2 · (−2r + 2m)

= 3r2(H −H(r)).

From Proposition 3.11, we know that H(r) is an increasing function on (r−, r+),
so k(r;H) has only one critical point r = RH , where H(RH ) = H . Furthermore,
k′(r;H) > 0 on (r−, RH ) and k′(r;H) < 0 on (RH , r+), so the critical point will
attain the maximum value of k(r;H). �

Similarly, spacelike condition of an SSCMC hypersurface in region II’ in fact
restricts the domain of f (r) in region II’; that is, from

l(r;H, c) =
1

√
−h(r)

(
Hr −

c

r2

)
> 1⇔ c < Hr3

− r(−r2
+ 2mr − e2)

1
2 ,

we consider another function k̃(r;H) = Hr3
− r(−r2

+ 2mr − e2)
1
2 defined on

(r−, r+), then the domain of f (r) in region II’ is

{r ∈ (r−, r+)| k̃(r;H) > c} ∪ {r ∈ (r−, r+)| k̃(r;H) = c and f (r) is finite}.

PROPOSITION 3.17. For a fixed H ∈ R, the function k̃(r;H) has a unique
minimum point at r = rH , where r = rH is a cylindrical hypersurface with mean
curvature H .

Proof: Direct computation gives

k̃′(r;H) = 3Hr2
− (−r2

+ 2mr − e2)
1
2 − r ·

1
2
(−r2

+ 2mr − e2)−
1
2 · (−2r + 2m)

= 3r2(H −H(r)).

From Proposition 3.13, we know that H(r) is a decreasing function on (r−, r+),
so k̃(r;H) has only one critical point r = rH , where H(rH ) = H . Furthermore,
k̃′(r;H) < 0 on (r−, rH ) and k̃′(r;H) > 0 on (rH , r+), so the critical point will
attain the minimum value of k̃(r;H). �

For a fixed H ∈ R, we plot graphs of k(r;H) and k̃(r;H) in Fig. 5. Two
graphs of functions (r, y = k(r;H)) and (r, y = k̃(r;H)) form a closed loop. From
this loop and a horizontal line y = c, it is much easier to know the domain of the
function f (r). That is, the preimage of the line outside the loop will determine the
domain of f (r) and hence we know the position of the SSCMC hypersurface.

More precisely, the following proposition will describe SSCMC hypersurfaces in
regions II or II’.
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Fig. 5: Graphs of k(r;H) and k̃(r;H).

Fixed H ∈ R, we plot graphs of k(r;H) and k̃(r;H) in Fig. 5. Two graphs of functions
(r, y = k(r;H)) and (r, y = k̃(r;H)) form a closed loop. From this loop and a horizontal
line y = c, it is much easier to know the domain of the function f(r). That is, the
preimage of the line outside the loop will determine the domain of f(r) and hence we
know the position of the SSCMC hypersurface.

More precisely, the following proposition will describe SSCMC hypersurfaces in region
II or II’.
Proposition 3.18. Given H > 0, denote CH = max

r∈(r−,r+)
k(r;H) = k(RH ;H), where

k(r;H) = Hr3 + r(−r2 + 2mr − e2)
1
2 , and cH = min

r∈(r−,r+)
k̃(r;H) = k̃(rH ;H), where

k̃(r;H) = Hr3 − r(−r2 + 2mr − e2)
1
2 . There are seven types of noncylindrical SSCMC

hypersurfaces in region II or region II’ with formulae of f(r) in Proposition 3.12 and
3.15 according to the value of c:

(A) If c > CH , then f(r) is defined on (r−, r+) in region II.
(B) If c = CH , then f(r) is defined on (r−, RH) or (RH , r+) in region II.
(C) If r3+H < c < CH , then f(r) is defined on (r−, r′] or [r′′, r+) in region II, where

k(r′) = k(r′′) = c. At r = r′ or r = r′′, we can take another function also defined on
(r−, r′] or [r′′, r+) but different sign of slope joined at r = r′ or r = r′′ respectively
such that the union of two graphs of functions forms a smooth SSCMC hypersurface
in region II.

(D) If r3−H < c < r3+H, then f(r) is defined on (r−, r′] in region II, or [r′′, r+) in region
II’, where k(r′) = k̃(r′′) = c. At r = r′ or r = r′′, we can take another function
also defined on (r−, r′] or [r′′, r+) but different sign of slope joined at r = r′ or
r = r′′ respectively such that the union of two graphs of functions forms a smooth
SSCMC hypersurface in region II or II’, respectively.

(E) If cH < c < r3−H, then f(r) is defined on (r−, r′] or [r′′, r+) in region II’, where
k̃(r′) = k̃(r′′) = c. At r = r′ or r = r′′, we can take another function also defined on

Fig. 5. Graphs of k(r;H) and k̃(r;H).

PROPOSITION 3.18. Given H > 0, denote CH = max
r∈(r−,r+)

k(r;H) = k(RH ;H),

where k(r;H) = Hr3
+ r(−r2

+ 2mr − e2)
1
2 , and cH = min

r∈(r−,r+)
k̃(r;H) = k̃(rH ;H),

where k̃(r;H) = Hr3
− r(−r2

+ 2mr − e2)
1
2 . There are seven types of noncylin-

drical SSCMC hypersurfaces in region II or region II’ with formulae of f (r) in
Propositions 3.12 and 3.15 according to the value of c:

(A) If c > CH , then f (r) is defined on (r−, r+) in region II.
(B) If c = CH , then f (r) is defined on (r−, RH ) or (RH , r+) in region II.
(C) If r3

+
H < c < CH , then f (r) is defined on (r−, r

′
] or [r ′′, r+) in region

II, where k(r ′) = k(r ′′) = c. At r = r ′ or r = r ′′, we can take another
function also defined on (r−, r ′] or [r ′′, r+) but different sign of slope joined
at r = r ′ or r = r ′′, respectively, such that the union of two graphs of
functions forms a smooth SSCMC hypersurface in region II.

(D) If r3
−
H < c < r3

+
H , then f (r) is defined on (r−, r ′] in region II, or [r ′′, r+)

in region II’, where k(r ′) = k̃(r ′′) = c. At r = r ′ or r = r ′′, we can take
another function also defined on (r−, r

′
] or [r ′′, r+) but different sign of

slope joined at r = r ′ or r = r ′′, respectively, such that the union of two
graphs of functions forms a smooth SSCMC hypersurface in region II or
II’, respectively.

(E) If cH < c < r3
−
H , then f (r) is defined on (r−, r

′
] or [r ′′, r+) in region

II’, where k̃(r ′) = k̃(r ′′) = c. At r = r ′ or r = r ′′, we can take another
function also defined on (r−, r ′] or [r ′′, r+) but different sign of slope joined
at r = r ′ or r = r ′′, respectively, such that the union of two graphs of
functions forms a smooth SSCMC hypersurface in region II’.

(F) If c = cH , then f (r) is defined on (r−, rH ) or (rH , r+) in region II’.
(G) If c < cH , then f (r) is defined on (r−, r+) in region II’.

Before proving Proposition 3.18, we remark that for H = 0 or H < 0, SSCMC
hypersurfaces in regions II or II’ can be treated similarly. The only difference is
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(r−, r′] or [r′′, r+) but different sign of slope joined at r = r′ or r = r′′ respectively
such that the union of two graphs of functions forms a smooth SSCMC hypersurface
in region II’.

(F) If c = cH , then f(r) is defined on (r−, rH) or (rH , r+) in region II’.
(G) If c < cH , then f(r) is defined on (r−, r+) in region II’.
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Fig. 6: Using y = c, k(r;H) and k̃(r;H) to characterize different types of SSCMC hyper-
surfaces. This figure illustrates H > 0 case.

Before proving Proposition 3.18, we remark that for H = 0 or H < 0, SSCMC
hypersurfaces in region II or II’ can be similarly treated. The only difference is that
different types of noncylindrical SSCMC hypersurfaces are characterized by the values
CH > r3−H = r3+H > cH or CH > r3−H > r3+H > cH , respectively. All types of
noncylindrical SSCMC hypersurfaces can be similarly interpreted from the graphs of
k(r;H) and k̃(r;H), Fig. 5 (b) for example.

Proof. The key point is to make sure the order of f ′(r) when l(r;H, c) → 1; that is, we
observe the formula

|f ′(r)| = 1

−h(r)

√
l2(r;H, c)

l2(r;H, c) − 1
.

We only need to take care of the denominator part 1√
l2(r;H,c)−1

. For the cases (A) or (G),
since l(r;H, c) > 1 for all r ∈ (r−, r+), SSCMC hypersurfaces will range over (r−, r+) in
the region II or II’, respectively.

For cases (B) or (F), since it corresponds to the maximum value of k(r;H) or minimum
value of k̃(r;H), solutions of l2(r;H, c)−1 = 0 are double real roots at r = RH or r = rH .
It implies that |f ′(r)| is of order O(|r −RH |−1) or O(|r − rH |−1), so we get |f(r)| → ∞
as r → RH or r → rH .

Fig. 6. Using y = c, k(r;H) and k̃(r;H) to characterize different types of SSCMC hypersurfaces. This figure
illustrates the H > 0 case.

that different types of noncylindrical SSCMC hypersurfaces are characterized by the
values CH > r3

−
H = r3

+
H > cH or CH > r3

−
H > r3

+
H > cH , respectively. All types

of noncylindrical SSCMC hypersurfaces can be similarly interpreted from the graphs
of k(r;H) and k̃(r;H), Fig. 5 (b) for example.

Proof: The key point is to make sure the order of f ′(r) when l(r;H, c)→ 1;
that is, we observe the formula

|f ′(r)| =
1
−h(r)

√
l2(r;H, c)

l2(r;H, c)− 1
.

We only need to take care of the denominator part 1√
l2(r;H,c)−1

. For the cases (A)

or (G), since l(r;H, c) > 1 for all r ∈ (r−, r+), SSCMC hypersurfaces will range
over (r−, r+) in the region II or II’, respectively.

For cases (B) or (F), since it corresponds to the maximum value of k(r;H)
or minimum value of k̃(r;H), solutions of l2(r;H, c) − 1 = 0 are double real
roots at r = RH or r = rH . It implies that |f ′(r)| is of order O(|r − RH |−1) or
O(|r − rH |

−1), so we get |f (r)| → ∞ as r → RH or r → rH .
For cases (C), (D), or (E), since solutions of l2(r;H, c) − 1 = 0 will be two

distinct real roots, say r = r ′ or r = r ′′, we know that |f ′(r)| is of order O(|r−r ′|−
1
2 )

or O(|r − r ′′|−
1
2 ). It indicates that f (r) is finite at r = r ′ or r = r ′′. We choose

one function with f ′(r) > 0 and another function with f ′(r) < 0 with the same
domain, the same c, and adjust another constant c̄ so that two functions f (r) have
the same value at r = r ′ or r = r ′′. For example, from the formulae (4) and (5),
or (6) and (7), if we take the initial number as rini = r

′ or rini = r
′′, then they

share the same c̄ value. Therefore, the union of two graphs of functions forms
a continuous SSCMC hypersurface in region II or region II’.
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We still need to prove the smoothness at the joint point of two SSCMC
hypersurfaces. Here we look at the case r = r ′, and the case r = r ′′ is similar. We
consider their inverse functions of t = f (r) in (4), and (5), or (6) and (7), with
rini = r

′ that is, we rewrite the SSCMC hypersurface as a graph of r = g(t) such
that g(c̄) = r ′. Direct computation (by induction) gives

g(2k+1)(t) =


∑k

i=0Ak,i(l
2
− 1)i+

1
2 if t < c̄,

(−1)2k+1∑k
i=0Ak,i(l

2
− 1)i+

1
2 if t > c̄,

and

g(2k)(t) =


∑k

i=0 Bk,i(l
2
− 1)i if t < c̄,

(−1)2k+1∑k
i=0 Bk,i(l

2
− 1)i if t > c̄,

where Ak,i and Bk,i are functions of h, l and their derivatives with respective to r .
As t → c̄, we have r → r ′ and lim

r→r ′
l2 − 1 = 0, and it implies

lim
t→c̄−

g(2k+1)(t) = lim
t→c̄+

g(2k+1)(t) = 0 and lim
t→c̄−

g(2k)(t) = lim
t→c̄+

g(2k)(t) = Bk,0.

Hence the union of two SSCMC hypersurfaces is smooth at the joint point. �

PROPOSITION 3.19. Suppose that f (r) is a solution of SSCMC equation defined
near r = r− or r = r+. Then lim

r→(r−)+
|f ′(r)| = ∞ or lim

r→(r+)−
|f ′(r)| = ∞. Moreover,

spacelike condition of the SSCMC hypersurface (t = f (r), r, θ, φ) still holds near
the coordinate singularities.

Proof: From the formula

|f ′(r)| =
1
−h(r)

√
l2(r;H, c)

l2(r;H, c)− 1
=

1
|r − r−||r − r+|

√
l2(r;H, c)

l2(r;H, c)− 1
,

we know that lim
r→(r∓)±

|f ′(r)| = ∞. Spacelike property can be extended at r = r±

because

lim
r→r±
〈∇F,∇F 〉 = lim

r→r±

1
h(l2 − 1)

= −
1(

−Hr± + c/r
2
±

)2 < 0. �

4. Characterization of SSCMC hypersurfaces in the extended RN spacetime
From all discussions in Section 3, we are ready to prove the characterization

theorem.

CHARACTERIZATION THEOREM. All SSCMC hypersurfaces in the extended RN
spacetime can be determined by two parameters c and c̄. In other words, SSCMC
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hypersurfaces in each standard RN coordinates region are determined by two
constants of integration c and c̄, and we can take the same c value and adjust
the value of c̄ such that the union of SSCMC hypersurfaces in the extended RN
spacetime is C1 and thus C∞ smooth.

Here we aim to describe the characterization theorem in more detail. In the
following arguments, we add indices I, II, III, I’, II’, and III to each constant
of integration to distinguish SSCMC hypersurfaces in different regions. First of all,
we start form an SSCMC hypersurface 6H,cI,c̄I in region I to construct a maximally
extended smooth SSCMC hypersurface in the extended RN spacetime. We divide
the construction into three theorems according to the value cI > r3

+
H , cI = r3

+
H ,

or cI < r3
+
H .

THEOREM 4.1. Given constant mean curvature H ∈ R, cI > r3
+
H , and c̄I ∈ R, it

will determine an SSCMC hypersurface 6H,cI,c̄I in region I. We can take an SSCMC
hypersurface 6H,cII,c̄II in region II with cII = cI and with some c̄II determined
by c̄I such that 6H,cI,c̄I ∪6H,cII,c̄II is a smooth SSCMC hypesurface. Furthermore,

suppose that CH = max
r∈(r−,r+)

Hr3
+ r(−r2

+ 2mr − e2)
1
2 .

(A) If cI > CH , then we can take an SSCMC hypersurface 6H,cIII,c̄III in
region III with cIII = cI and with some c̄III determined by c̄I such that
6H,cI,c̄I ∪ 6H,cII,c̄II ∪ 6H,cIII,c̄III is a smooth SSCMC hypersurface in the
extended RN spacetime.

(B) If cI = CH , then 6H,cI,c̄I ∪ 6H,cII,c̄II is a smooth SSCMC hypersurface
ranging from region I to II in the extended RN spacetime.

(C) If r3
+
H < cI < CH , then we can take an SSCMC hypersurface 6H,cI′ ,c̄I′

in region I’ with cI′ = cI and with some c̄I′ determined by c̄I such
that 6H,cI,c̄I ∪6H,cII,c̄II ∪6H,cI′ ,c̄I′ is a smooth SSCMC hypersurface in the
extended RN spacetime.

Proof: The SSCMC hypersurface 6H,cI,c̄I in region I is (t=f (r;H, cI, c̄I), r, θ, φ)
in the standard RN coordinates. Since cI > r3

+
H , we know that lim

r→(r+)+
f (r) = +∞.

It implies that 6H,cI,c̄I will touch the interface of region I and II. Recall that an
SSCMC solution 6H,cI,c̄I in region I is

fI(r;H, cI, c̄I) =

∫ r

rI

l(x;H, cI)

h(x)
√

1+ l2(x;H, cI)
dx + c̄I,

for some initial number rI in region I, and an SSCMC solution 6H,cII,c̄II in region II
with lim

r→(r+)−
f (r) = +∞ is

fII(r;H, cII, c̄II) =

∫ r

rII

1
−h(x)

√
l2(x;H, cII)

l2(x;H, cII)− 1
dx + c̄II,

where rII is another initial number in region II.
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Notice that from Proposition 3.18 (A), (B), and (C), we know that cII > r3
+
H .

Here we will find conditions to guarantee that 6H,cI,c̄I ∪ 6H,cII,c̄II is C1 smooth
at the joint point. Let f̄ ′I(r;H, cI) = 1/h(r) + f ′I(r;H, cI) and f̄ ′II(r;H, cII) =
1/h(r)+ f ′II(r;H, cII) near r = r+. By Taylor’s expansion, since

f ′I =
l

h
√

1+ l2
= −

1
h

√
1−

1
1+ l2

= −
1
h

∞∑
n=0

(−1)nC
1
2
n

(
1

1+ l2

)n
= −

1
h
+

1
2
·

1
h+ (Hr − cI/r2)2

+
1
8
·

h

(h+ (Hr − cI/r2)2)2
+ · · · ,

we have
lim

r→(r+)+
f̄ ′I =

1

2
(
Hr+ − cI/r

2
+

)2 .

Similarly, since

f ′II =
1
−h

√
l2

l2−1
= −

1
h
+

1
2
·

1
h+(−Hr+cII/r2)2

+
1
8
·

h

(h+(−Hr+cII/r2)2)2
+· · · ,

we have
lim

r→(r+)−
f̄ ′II =

1

2
(
−Hr+ + cII/r

2
+

)2 .

The C1 smoothness condition at r = r+ requires

lim
r→(r+)+

f̄ ′I = lim
r→(r+)−

f̄ ′II ⇒ cII = cI or cII = 2r3
+
H − cI.

Since cII > r3
+
H , we get that cII = cI is the only choice.

Next, we will determine the relation between c̄II and c̄I. Since

lim
r→(r+)+

tan(V ) = lim
r→(r+)−

tan(V )2,

it gives that

exp
(
α

(∫ r+

rI

f̄ ′I(r) dr+rI+
r2
+

r+−r−
ln |rI−r+|−

r2
−

r+−r−
ln |rI−r−|+ c̄I

))
= exp

(
α

(∫ r+

rII

f̄ ′II(r) dr+rII+
r2
+

r+−r−
ln |rII−r+|−

r2
−

r+−r−
ln |rII−r−|+ c̄II

))
.

Since cI = cII, we know that the expressions for f̄ ′I(r) and f̄ ′II(r) are the same,

2Here we need to know some relations on the construction of the Penrose diagram of the Reissner–Nordström
spacetime, and we refer to [9] for more discussions.
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so we write them as f̄ ′(r). Therefore, we can take

c̄II = c̄I +

∫ rII

rI

f̄ ′(r) dr + (rI − rII)+
r2
+

r+ − r−
ln
∣∣∣∣ rI − r+rII − r+

∣∣∣∣− r2
−

r+ − r−
ln
∣∣∣∣ rI − r−rII − r−

∣∣∣∣
such that 6H,cI,c̄I ∪6H,cII,c̄II is continuous at the joint point r = r+.

From Proposition 3.18, there are three types of SSCMC hypersurfaces when
cI > r3

+
H .

(A) If cI > CH , then the next joint point will be r = r− at the interface of
regions II and III. The SSCMC hypersurfaces 6H,cII,c̄II and 6H,cIII,c̄III
have the behaviour lim

r→(r−)+
fII(r) = lim

r→(r−)−
fIII(r) = −∞. Notice that from

Proposition 3.4, we know that cIII > r3
−
H . We write the SSCMC solu-

tion as fIII(r;H, cIII, c̄III), f̄ ′III(r;H, cIII) = 1/h(r) + f ′III(r;H, cIII), and
f̄ ′II(r;H, cII) = 1/h(r) + f ′II(r;H, cII) near r = r−. The C1 smoothness
condition requires

lim
r→(r−)+

f̄ ′II = lim
r→(r−)−

f̄ ′III ⇒

(
−Hr−+

cII

r2
−

)2

=

(
Hr−−

cIII

r2
−

)2

⇒ cIII = cII.

The other solution cIII = 2r3
−
H − cII is not satisfied because cIII > r3

−
H .

We use lim
r→(r−)+

tan(V̄ ) = lim
r→(r−)−

tan(V̄ ) to determine c̄III, and it gives

exp
(
ᾱ

(∫ r−

rII

f̄ ′II(r) dr+rII+
r2
+

r+−r−
ln |rII−r+|−

r2
−

r+−r−
ln |rII−r−|+c̄II

))
= exp

(
ᾱ

(∫ r−

rIII

f̄ ′III(r) dr+rIII+
r2
+

r+−r−
ln |rIII−r+|−

r2
−

r+−r−
ln |rIII−r−|+c̄III

))
.

When we take cII = cIII, it implies that the expressions for f̄ ′II(r) and
f̄ ′III(r) are the same, so we write them as f̄ ′(r). Hence

c̄III = c̄II+

∫ rIII

rII

f̄ ′(r) dr+(rII−rIII)+
r2
+

r+−r−
ln
∣∣∣∣ rII−r+rIII−r+

∣∣∣∣− r2
−

r+−r−
ln
∣∣∣∣ rII−r−rIII−r−

∣∣∣∣
= c̄I+

∫ rIII

rI

f̄ ′(r) dr+(rI−rIII)+
r2
+

r+−r−
ln
∣∣∣∣ rI−r+rIII−r+

∣∣∣∣− r2
−

r+−r−
ln
∣∣∣∣ rI−r−rIII−r−

∣∣∣∣ .
(B) If cI = CH , then the SSCMC hypersurface in region II satisfies lim

r→R+
H

fII(r) =

−∞, so 6H,cI,c̄I ∪6H,cII,c̄II tends to i+ in the Penrose diagram, not passing
through other regions.

(C) If r3
+
H < cI < CH , then the other end of the SSCMC hypersurface 6H,cII,c̄II

in region II satisfies lim
r→(r+)−

fII(r) = −∞, and we will try to take some

SSCMC hypersurface 6H,cI′ ,c̄I′ in region I’ to glue them.
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Recall the proof of case (C) in Proposition 3.18 and the formulae (4), (5),
if we take the initial number rini = r

′′, then 6H,cII,c̄II is the union of two
graphs of functions f (r;H, cII, c̄II) with the same cII and c̄II but with
opposite sign of f ′(r;H, cII).
We write the SSCMC solution for f ′(r) < 0 part near r = r+ as
fI′(r;H, cI′, c̄I′), f̄ ′I′(r;H, cI′) = 1/h(r)−f ′I′(r;H, cI′), and f̄ ′II(r;H, cII) =
1/h(r)− f ′II(r;H, cII). The C1 smoothness condition requires

lim
r→(r+)−

f̄ ′II = lim
r→(r+)−

f̄ ′I′ ⇒

(
−Hr++

cII

r2
+

)2

=

(
−Hr++

cI′

r2
+

)2

⇒ cI′ = cII.

The other solution cI′ = 2r3
+
H − cII is not satisfied because we require

cI′ > r3
+
H by Proposition 3.7.

We use the condition lim
r→(r+)+

tan(U) = lim
r→(r+)−

tan(U) to determine cI′ . Since

−exp
(
−α

(
−

∫ r+

r ′′
f̄ ′II(r) dr−r

′′
−

r2
+

r+−r−
ln |r ′′−r+|+

r2
−

r+−r−
ln |r ′′−r−|+c̄II

))
=− exp

(
−α

(
−

∫ r+

rI′
f̄ ′I′(r) dr−rI′−

r2
+

r+−r−
ln |rI′−r+|+

r2
−

r+−r−
ln |rI′−r−|+c̄I′

))
,

and the expressions for f̄ ′II(r) and f̄ ′I′(r) are the same, so we write them
as f̄ ′(r), and we have

c̄I′ = c̄II+

∫ r ′′

rI′
f̄ ′(r) dr+(rI′−r

′′)+
r2
+

r+−r−
ln
∣∣∣∣rI′−r+r ′′−r+

∣∣∣∣− r2
−

r+−r−
ln
∣∣∣∣rI′−r−r ′′−r−

∣∣∣∣
= c̄I+

∫ r ′′

rI

f̄ ′(r) dr+

∫ r ′′

rI′
f̄ ′(r) dr+(rI+rI′−2r ′′)

+
r2
+

r+−r−
ln
∣∣∣∣(rI−r+)(rI′−r+)(r ′′−r+)(r ′′−r+)

∣∣∣∣− r2
−

r+−r−
ln
∣∣∣∣(rI−r−)(rI′−r−)(r ′′−r−)(r ′′−r−)

∣∣∣∣ .
Once we know that the SSCMC hypersurface is C1 smooth, from the SSCMC equa-
tion (2), we get the union of SSCMC hypersurfaces is C2, and the standard PDE theory
(see [4, Theorem 6.17.] for example) implies that the SSCMC hypersurface is C∞. �

THEOREM 4.2. Given constant mean curvature H ∈ R, cI = r3
+
H , and c̄I ∈ R, it

will determine an SSCMC hypersurface 6H,cI,c̄I in region I. We can take an SSCMC
hypersurface 6H,cI′ ,c̄I′ in region I’ with cI′ = cI and with some c̄I′ determined by
c̄I such that 6H,cI,c̄I ∪6H,cI′ ,c̄I′ is a smooth SSCMC hypersurface in the extended
RN spacetime.

Proof: When cI = r3
+
H , the orders of f ′I(r) and f ′I′(r) near r = r+ are

O(|r − r+|
−

1
2 ) such that lim

r→(r+)+
fI(r) and lim

r→(r+)+
fI′(r) are finite. In region I, we
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observe

tan(U) =
√
r − r+ exp

(
−α

(∫ r+

rI

f ′I(r) dr + c̄I − r+ +
r2
−

r+ − r−
ln |r − r+|

))
,

tan(V ) =
√
r − r+ exp

(
α

(∫ r+

rI

f ′I(r) dr + c̄I + r+ −
r2
−

r+ − r−
ln |r − r+|

))
,

and
dV

dU

∣∣∣∣
r=(r+)+

=

dV
dr

dU
dr

∣∣∣∣∣
r=(r+)+

= exp
(

2α
∫ r+

rI

f ′I(r) dr + c̄I

)
.

In region I’, we have

tan(U) = −
√
r − r+ exp

(
−α

(∫ r+

rI′
f ′I′(r) dr + c̄I′ − r+ +

r2
−

r+ − r−
ln |r − r+|

))
,

tan(V ) = −
√
r − r+ exp

(
α

(∫ r+

rI′
f ′I′(r) dr + c̄I′ + r+ −

r2
−

r+ − r−
ln |r − r+|

))
,

and
dV

dU

∣∣∣∣
r=(r+)−

=

dV
dr

dU
dr

∣∣∣∣∣
r=(r+)−

= exp
(

2α
∫ r+

rI′
f ′I′(r) dr + c̄I′

)
.

Since f ′I(r) and f ′I′(r) have the same expressions, we write them as f ′(r). We can
choose

c̄I′ = c̄I + 2α
∫ rI′

rI

f ′(r) dr

such that 6H,cI,c̄I ∪6H,cI′ ,c̄I′ is a C1 and thus C∞ SSCMC hypersurface. �

THEOREM 4.3. Given constant mean curvature H ∈ R, cI < r3
+
H , and c̄I ∈ R,

it will determine an SSCMC hypersurface 6H,cI,c̄I in region I. We can take an
SSCMC hypersurface 6H,cII′ ,c̄II′ in region II’ with cII′ = cI and with some c̄II′

determined by c̄I such that 6H,cI,c̄I ∪ 6H,cII′ ,c̄II′ is a smooth SSCMC hypesurface.

Furthermore, suppose that cH = min
r∈(r−,r+)

Hr3
− r(−r2

+ 2mr − e2)
1
2 .

(A) If cH < cI < r3
+
H , then we can take an SSCMC hypersurface 6H,cI′ ,c̄I′ in

region I’ with cI′ = cI and with some c̄I′ determined by c̄I such that
6H,cI,c̄I ∪ 6H,cII′ ,c̄II′ ∪ 6H,cI′ ,c̄I′ is a smooth SSCMC hypersurface in the
extended RN spacetime.

(B) If cI = cH , then 6H,cI,c̄I ∪ 6H,cII′ ,c̄II′ is a smooth SSCMC hypersurface
ranging from I to II’ in the extended RN spacetime.

(C) If cI < cH , then we can take an SSCMC hypersurface 6H,cIII,c̄III in region
III with cIII = cI and with some c̄III determined by c̄I such that 6H,cI,c̄I ∪
6H,cII′ ,c̄II′ ∪6H,cIII,c̄III is a smooth SSCMC hypersurface in the extended RN
spacetime.
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The proof of this theorem is similar to the proof in Theorem 4.1. By examining
the Taylor expansions of SSCMC solutions f (r;H, c, c̄) near coordinate singularities,
we can get the C1 smoothness conditions, and by PDE theory, we prove the C∞

smoothness of the extended SSCMC hypersurfaces. Here we summarize the explicit
relations on c̄:

(A) If cI < r3
+
H , then

c̄II′ = c̄I +

∫ rII′

rI

f̄ ′(r) dr − (rI − rII′)

−
r2
+

r+ − r−
ln
∣∣∣∣ rI − r+rII′ − r+

∣∣∣∣+ r2
−

r+ − r−
ln
∣∣∣∣ rI − r−rII′ − r−

∣∣∣∣
and (take rII′ = r

′′)

c̄I′ = c̄I +

∫ r ′′

rI

f̄ ′(r) dr +

∫ r ′′

rI′
f̄ ′(r) dr + (2r ′′ − rI − rI′)

−
r2
+

r+ − r−
ln
∣∣∣∣ rI − r+r ′′ − r+

·
rI′ − r+

r ′′ − r+

∣∣∣∣+ r2
−

r+ − r−
ln
∣∣∣∣ rI − r−r ′′ − r−

·
rI′ − r−

r ′′ − r−

∣∣∣∣ .
(C) If cI < cH , then

c̄III = c̄I +

∫ rIII

rI

f̄ ′(r) dr − (rI − rIII)

−
r2
+

r+ − r−
ln
∣∣∣∣ rI − r+rIII − r+

∣∣∣∣+ r2
−

r+ − r−
ln
∣∣∣∣ rI − r−rIII − r−

∣∣∣∣ .
Fig. 7 illustrates each case of SSCMC hypersurfaces according to the above

discussion.
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and (take rII′ = r′′)

c̄I′ = c̄I +

∫ r′′

rI

f̄ ′(r) dr +
∫ r′′

rI′
f̄ ′(r) dr + (2r′′ − rI − rI′)

− r2+
r+ − r−

ln

∣∣∣∣
rI − r+
r′′ − r+

· rI′ − r+
r′′ − r+

∣∣∣∣+
r2−

r+ − r−
ln

∣∣∣∣
rI − r−
r′′ − r−

· rI′ − r−
r′′ − r−

∣∣∣∣ .

(C) If cI < cH , then

c̄III = c̄I +

∫ rIII

rI

f̄ ′(r) dr − (rI − rIII)− r2+
r+ − r−

ln

∣∣∣∣
rI − r+
rIII − r+

∣∣∣∣+
r2−

r+ − r−
ln

∣∣∣∣
rI − r−
rIII − r−

∣∣∣∣ .

Fig. 7 illustrates each case of SSCMC hypersurfaces according to the above discussion.
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Fig. 7: Left: Given ΣH,c,c̄ in region I, we can construct the extended smooth SSCMC
hypersurface in the extended RN spacetime according to c and c̄. Right: Given ΣH,c,c̄

in different regions, we can also construct the extended smooth SSCMC hypersurface.

From Theorem 4.1– 4.3, we construct many extended smooth SSCMC hypersurfaces
in the extended RN spacetime. If we start from SSCMC hypersurfaces in different regions,
what are new extended smooth SSCMC hypersurfaces? Here we summarize the results:

(A) We start from an SSCMC hypersurface ΣH,cII,c̄II in region II.

(A1) If cII > CH and f ′(r) < 0 in region II, we can extend ΣH,cII,c̄II to region I’ and
III’ and get the extended SSCMC hypersurface ΣH,cI′ ,c̄I′∪ΣH,cII,c̄II∪ΣH,cIII′ ,c̄III′ .

(A2) If cII = CH and |f ′(r)| = ∞, then ΣH,cII,c̄II is in fact the cylindrical hypersur-
face (t, r = RH , θ, φ).

(A3) If cII = CH and |f ′(r)| 6= ∞ for all r, besides ΣH,cI,c̄I ∪ ΣH,cII,c̄II is stated in
Theorem 4.1 (B), we can get different types of SSCMC hypersurface such as
ΣH,cI′ ,c̄I′ ∪ ΣH,cII,c̄II , ΣH,cII,c̄II ∪ ΣH,cIII,c̄III , and ΣH,cII,c̄II ∪ΣH,cIII′ ,c̄III′ .

Fig. 7. Left: Given 6H,c,c̄ in region I, we can construct the extended smooth SSCMC hypersurface in the
extended RN spacetime according to c and c̄. Right: Given 6H,c,c̄ in different regions, we can also construct
the extended smooth SSCMC hypersurface.



394 K.-W. LEE

From Theorems 4.1– 4.3, we construct many extended smooth SSCMC hyper-
surfaces in the extended RN spacetime. If we start from SSCMC hypersurfaces in
different regions, what are new extended smooth SSCMC hypersurfaces? Here we
summarize the results:

(A) We start from an SSCMC hypersurface 6H,cII,c̄II in region II.

(A1) If cII > CH and f ′(r) < 0 in region II, we can extend 6H,cII,c̄II
to regions I’ and III’ and get the extended SSCMC hypersurface
6H,cI′ ,c̄I′ ∪6H,cII,c̄II ∪6H,cIII′ ,c̄III′ .

(A2) If cII = CH and |f ′(r)| = ∞, then 6H,cII,c̄II is in fact the cylindrical
hypersurface (t, r = RH , θ, φ).

(A3) If cII = CH and |f ′(r)| 6= ∞ for all r , besides 6H,cI,c̄I ∪ 6H,cII,c̄II
is stated in Theorem 4.1 (B), we can get different types of SSCMC
hypersurface such as 6H,cI′ ,c̄I′ ∪ 6H,cII,c̄II , 6H,cII,c̄II ∪ 6H,cIII,c̄III , and
6H,cII,c̄II ∪6H,cIII′ ,c̄III′ .

(A4) If r3
−
H < cII < CH and |f ′(r)| 6= ∞ for all r , besides 6H,cI,c̄I ∪

6H,cII,c̄II ∪ 6H,cI′ ,c̄I′ is stated in Theorem 4.1 (C), another type of
SSCMC hypersurface is 6H,cIII,c̄III ∪6H,cII,c̄II ∪6H,cIII′ ,c̄III′ .

(B) We start from an SSCMC hypersurface 6H,cIII,c̄III in region III.

(B1) If cIII = r3
−
H , we get 6H,cIII,c̄III ∪6H,cIII′ ,c̄III′ .

(B2) If cH < cIII < r3
−
H , we get 6H,cIII,c̄III ∪6H,cII′ ,c̄II′ ∪6H,cIII′ ,c̄III′ .

(B3) If cIII = cH , we get 6H,cIII,c̄III ∪6H,cII′ ,c̄II′ .

SSCMC hypersurfaces starting from regions I’, II’, or III’ can be discussed
by a similar procedure as the one used in Theorems 4.1–4.3. As a remark, here
we provide another viewpoint to construct the SSCMC hypersurface starting from
these regions. For example, we start an SSCMC hypersurface 6H,cI′ ,c̄I′ in region I’
with coordinate (T = F(X),X, θ, φ), where X ≤ 0. We use the T -axis symmetry
to get an SSCMC hypersurface 6H,cI,c̄I in region I. In other words, 6H,cI,c̄I is
of coordinates (T = F1(X)

def.
== F(−X),X, θ, φ), where X ≥ 0, and furthermore,

from the formula of SSCMC solutions, we know that cI = cI′ and c̄I = c̄I′ . From
Theorems 4.1–4.3, we get the extended smooth SSCMC hypersurface determined by
cI and c̄I′ with coordinates (T = F2(X),X, θ, φ), where F2(X) is the extended
smooth function containing F1(X). Finally, we use the T -axis symmetry again to
get 6 : (T = F̄ (X)

def.
== F2(−X),X, θ, φ), which is an extended smooth SSCMC

hypersurface containing 6H,cI′ ,c̄I′ in the extended RN spacetime.

5. Initial value problem for SSCMC equation in the extended RN spacetime
In this section, we will first formulate the SSCMC initial value problem as

follows.

SS-CMC INITIAL VALUE PROBLEM. Given H ∈ R, a point (T0, X0), and a value
V0 with 1 − V 2

0 > 0 in the Penrose diagram of the extended RN spacetime with
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the charge smaller than the mass, does there exist a unique function T = T (X)
satisfying the SSCMC equation (2), T (X0) = T0, T ′(X0) = V0, and 1− (T ′(X))2 > 0
for all T (X) is defined?

If the SSCMC initial value problem is true, then 6 : (T = T (X),X, θ, φ) is an
SSCMC hypersurface with constant mean curvature H in the extended RN spacetime.
From the discussion in Section 4, we are ready to answer this SSCMC initial value
problem.

MAIN THEOREM. The initial value problem for the spacelike, spherically sym-
metric, constant mean curvature hypersurface equation in the maximally extended
RN spacetime with the charge smaller than the mass is solvable and the solution
is unique.

Proof: Suppose that (T0, X0) is located at (t0, r0) for some RN spacetime in the
standard coordinates region. The initial value problem in the extended RN spacetime
can be equivalently changed as the initial value problem in the standard coordinates
with condition (t0, r0) and f ′(r0) = v0. Remark that v0 may be ∞ or −∞ if the
initial point is in regions II or II’. According to the discussion in Section 4, there
exists a unique SSCMC solution f (r;H, c, c̄) satisfying f (r0) = t0 and f ′(r0) = v0,
and the graph of the function f (r;H, c, c̄) can be uniquely smoothly extended to
other regions in the maximally extended RN spacetime. Therefore, we have proved
the main theorem. �
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