
Chapter 2 Regular Surfaces

2.1 Introduction

In this chapter, we will introduce the concept of a regular surface in R
3, and then dis-

cuss differentiable functions, the first fundamental form, and observe the orientation

property on regular surfaces.

2.2 Regular Surfaces; Inverse Images of Regular

Values

Roughly speaking, we want to define geometric objects obtained by taking pieces of

a plane, deforming and arranging them so that the figure has no sharp points, edges,

or self-intersections. We can do calculus on such objects called regular surfaces.

Definition 1 (page 52). A subset S ⊂ R
3 is a regular surface (正則曲面) if for each

p ∈ S, there exists a neighborhood V in R
3 and a map x : U → V ∩ S of an open

set U ⊂ R
2 onto V ∩ S ⊂ R

3 such that

(a) The map x is smooth. If we write

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U,

the functions x(u, v), y(u, v), and z(u, v) have continuous partial derivatives of

all orders in U .

(b) The map x is homeomorphism (同胚). That is, the map x has an inverse map

x−1 : V ∩ S → U which is continuous.

(c) For each q ∈ U , the differential map (微分映射) dxq : R
2 → R

3 is one-to-one.
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Figure 1: A regular surface.
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The mapping x is called a parametrization (參數化) or a system of local coordi-

nates (局部坐標系) in a neighborhood of p. The neighborhood V ∩ S of p in S is

called a coordinate neighborhood (坐標鄰域).

We will discuss the condition (a) and (c) in this section, and leave the discussion

on the condition (b) in next section. Let us discuss the condition (c) first. We

choose the canonical bases {e1 = (1, 0), e2 = (0, 1)} of R2 with coordinates (u, v),

and {f1 = (1, 0, 0), f2 = (0, 1, 0), f3 = (0, 0, 1)} of R3 with coordinates (x, y, z). Let

q = (u0, v0), then the space curve α(u) = x(u, v0) = (x(u, v0), y(u, v0), z(u, v0)) has

image lies on S and has at x(q) the tangent vector

xu|q=(u0,v0)
=

∂x

∂u

∣

∣

∣

∣

q=(u0,v0)

=

(

∂x

∂u
,
∂y

∂u
,
∂z

∂u

)∣

∣

∣

∣

q=(u0,v0)

= dxq(e1).

Similarly, the space curve β(v) = x(u0, v) = (x(u0, v), y(u0, v), z(u0, v)) has image

lies on S and has at x(q) the tangent vector

xv|q=(u0,v0)
=

∂x

∂v

∣

∣

∣

∣

q=(u0,v0)

=

(

∂x

∂v
,
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∂v
,
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)∣

∣

∣

∣

q=(u0,v0)

= dxq(e2).
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Figure 2: The differential map dxq.

Thus, the differential map dxq, can be written as a matrix form

[dxq]3×2 = [ dxq(e1) |xq(e2) ] =









∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

∂z
∂u

∂z
∂v









.

The differential map dxq : R2 → R
3 is one-to-one means that two column vectors

of the matrix [dxq] are linearly independent (線性獨立). It is also equivalent to
∂x
∂u

∧ ∂x
∂v

6= 0, or one of the minors of order 2 of the matrix dxq

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∂(y, z)

∂(u, v)
=

∣

∣

∣

∣

∣

∂y

∂u

∂y

∂v
∂z
∂u

∂z
∂v

∣

∣

∣

∣

∣

,
∂(x, z)

∂(u, v)
=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂z
∂u

∂z
∂v

∣

∣

∣

∣

∣

,

be different from zero at q.
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What surfaces are regular surfaces? In the following paragraphs, we will prove

two results. One result is that the graph of a smooth function is a regular surface.

The other result is that the surface determined by a regular value of an implicit

function is a regular surface.

Proposition 2 (page 58). If f : U → R is a smooth function in an open set U of

R
2, then the graph of f , the subset of R3 given by (x, y, f(x, y)) for (x, y) ∈ U , is a

regular surface.

Proof. It suffices to show that the map x : U → R
3 given by

x(x, y) = (x, y, f(x, y))

satisfies all conditions of the regular surface.

(a) Since f(x, y) is smooth, the map x(x, y) is smooth as well.

(b) If (x1, y1) 6= (x2, y2), then (x1, y1, f(x1, y1)) 6= (x2, y2, f(x2, y2)). So the map x

is one-to-one, and x−1 is well-defined. Since x−1 is the restriction to the graph

of f of the continuous projection of R3 onto the xy plane, x−1 is continuous.

(c) Since ∂x
∂x

∧ ∂x
∂y

= (1, 0, fx) ∧ (0, 1, fy) = (−fx,−fy, 1) 6= 0, we know that the

differential dxq is one-to-one.

� 光滑函數的圖形必為正則曲面。

Example 3. The Elliptic paraboloid (橢圓拋物面) z
c

= x2

a2
+ y2

b2
and hyperbolic

paraboloid (雙曲拋物面) z
c
= x2

a2
− y2

b2
are regular surfaces because they are graphs of

functions f(x, y) = c(x
2

a2
+ y2

b2
) and f(x, y) = c(x

2

a2
− y2

b2
), respectively.
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Figure 3: Elliptic paraboloid: z
c
= x2

a2
+ y2

b2
; Hyperbolic paraboloid: z

c
= x2

a2
− y2

b2
, c < 0.
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Definition 4 (page 58). Given a smooth map F : U ⊂ R
n → R

m defined in an open

set U of Rn, we say that p ∈ U is a critical point (臨界點) of F if the differential

dFp : Rn → R
m is not a surjective (or onto) mapping. The image F (p) ∈ R

m of a

critical point is called a critical value (臨界值) of F . A point of Rm which is not a

critical value is called a regular value (正則值) of F .

The terminology is motivated by the particular case in which F : U ⊂ R → R

is a real-valued function of a real variable. A point x0 ∈ U is critical if F ′(x0) = 0,

that is, if the differential dFx0 carries all the vectors in R to the zero vector.

x

y

x0 x1

uu

f(x1)

f(x0)

dfx1(u)

dfx0(u)

Figure 4: Critical point and regular point.

If F : U ⊂ R
3 → R is a smooth function, then dFp applied to the vector

e1 = (1, 0, 0) is obtained by calculating the tangent vector at F (p) to the curve

x → F (x, y0, z0). It follows that

dFp(e1) =
∂F

∂x
(x0, y0, z0) = Fx(p).

Similarly, for e2 = (0, 1, 0) and e3 = (0, 0, 1), we have

dFp(e2) =
∂F

∂y
(x0, y0, z0) = Fy(p),

dFp(e3) =
∂F

∂z
(x0, y0, z0) = Fz(p).

We conclude that the matrix [dFp] in the basis {e1, e2, e3} is given by

[dFp]1×3 = [ dFp(e1) | dFp(e2) | dFp(e3) ] = [Fx(p) Fy(p) Fz(p) ].

Notice that dFp is not surjective is equivalent that Fx(p) = Fy(p) = Fz(p) = 0.

Hence C ∈ F (U) is a regular value of F : U ⊂ R
3 → R if and only if Fx, Fy, and Fz

do not vanish simultaneously at any point in the inverse image

F−1(C) = {(x, y, z) ∈ U : F (x, y, z) = C}.
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Proposition 5 (page 59). If F : U ⊂ R
3 → R is a smooth function and C ∈ F (U)

is a regular value of F , then F−1(C) is a regular surface in R
3.

Proof. Let p = (x0, y0, z0) be a point of F−1(C). Since C is a regular value of f ,

without loss of generality, we assume that Fz 6= 0 at p. Consider the following

mapping:

F : U ⊂ R
3 −→ R

3

(x, y, z) 7−→ (u, v, t) = (x, y, F (x, y, z)),

Then the differential of F at p is given by

dF p =







1 0 0

0 1 0

Fx Fy Fz






.

We know that det(dFp) = Fz 6= 0.

By the Implicit Function Theorem (隱函數定理), there exists neighborhoods V of

p and W of F (p) such that F : V → W is invertible and the inverse F
−1

: W → V is

differentiable. It follows that the coordinate function of F
−1
, that is, the functions

x = u, y = v, z = g(u, v, t), (u, v, t) ∈ W,

are differentiable. In particular, z = g(u, v, C) = h(x, y) is a differentiable function

defined in the projection of V onto the xy plane. Since

F (F−1(C) ∩ V ) = W ∩ {(u, v, t)|t = C},

we conclude that the graph of h is F−1(C) ∩ V . By Proposition 2, F−1(C) ∩ V is

a coordinate neighborhood of p. Therefore, every p ∈ F−1(C) can be covered by a

coordinate neighborhood, and so F−1(C) is a regular surface.
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v
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F

F−1(C) ∩ V F = C
Cp F (p)

Figure 5: A regular value of a smooth function F is a regular surface.
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Example 6 (page 61). The ellipsoid (橢球) x2

a2
+ y2

b2
+ z2

c2
= 1 is a regular surface.

Solution. Consider the smooth function F (x, y, z) = x2

a2
+ y2

b2
+ z2

c2
. We compute

(Fx, Fy, Fz) = (2x
a2
, 2y
b2
, 2z
c2
). Since (Fx, Fy, Fz) = (0, 0, 0) if and only if (x, y, z) =

(0, 0, 0), we know that F (0, 0, 0) = 0 is the only critical value, and F (x, y, z) =

C,C > 0 is a regular value of F . Taking C = 1 and we get the ellipsoid is a regular

surface.

In particular, the sphere x2+y2+z2 = 1 is a regular surface since a = b = c = 1.

xx

yy

zz

φ

θ

Figure 6: Ellipsoid x2

a2
+ y2

b2
+ z2

c2
= 1 and sphere x2 + y2 + z2 = 1.

For most applications, it is convenient to relate parameterizations to the spherical

coordinates (球極坐標) on S
2. Let V = {(φ, θ); 0 < φ < π, 0 < θ < 2π} and let

x : V → R
2 be given by

x(φ, θ) = (sin φ cos θ, sin φ sin θ, cosφ).

The parameter φ is called the colatitude (餘緯) (the complement of the latitude) and

θ the longitude (經度).

� 球極坐標的 φ 與 θ 的設定並沒有統一的規定, 應對照前後文理解。

Exercise. Show that the hyperboloid of one sheet (單葉雙曲面) x2

a2
+ y2

b2
− z2

c2
= 1 is

a regular surface.

xx
yy

zz

Figure 7: Hyperboloid of one sheet x2

a2
+ y2

b2
− z2

c2
= 1 and hyperboloid of two sheets

−x2

a2
− y2

b2
+ z2

c2
= 1.
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Exercise (page 61). The hyperboloid of two sheets (雙葉雙曲面) −x2

a2
− y2

b2
+ z2

c2
= 1

is a regular surface. The surface is not path-connected (路徑連通). That is, given

two points in two distinct sheets (z ≥ 1 part and z ≤ −1 part), it is impossible to

join them by a continuous curve α(t) = (x(t), y(t), z(t)) contained in the surface.

Example 7 (page 61). The torus (輪胎面) T is generated by rotating a circle S
1 of

radius r about a straight line belonging to the plane of the circle and at a distance

a > r away from the center of the circle.

x

y

z

ra

v

u

Figure 8: Torus.

Let S1 be the circle in the yz plane with its center in the point (0, a, 0), then S
1

is given by (y − a)2 + z2 = r2, and the points of the torus T obtained by rotating

this circle about the z axis satisfy the equation
(

√

x2 + y2 − a
)2

+ z2 = r2.

To show that the torus T is a regular surface, consider the function F (x, y, z) =
(

√

x2 + y2 − a
)2

+ z2, which is differentiable for (x, y) 6= (0, 0). We compute

∂F

∂x
=

2x(
√

x2 + y2 − a)
√

x2 + y2
,

∂F

∂y
=

2y(
√

x2 + y2 − a)
√

x2 + y2
, and

∂F

∂z
= 2z.

The critical points of F will be (0, 0, 0) and all points satisfy x2+y2 = a2, z = 0. We

know that 0 and a2 are critical values of F , and r2 is a regular value of F . Therefore,

the torus T is a regular surface.

Remark that one parametrization for the torus T is given by

x(u, v) = ((r cosu+ a) cos v, (r cos u+ a) sin v, r sin u),

where 0 < u < 2π, 0 < v < 2π.

Proposition 2 says that the graph of a smooth function is a regular surface. The

following proposition provides a local version of this; that is, any regular surface is

locally the graph of a smooth function.
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Proposition 8 (page 63). Let S ⊂ R
3 be a regular surface and p ∈ S. Then there

exists a neighborhood V of p in S such that V is the graph of a differentiable function

which has one of the following three forms: z = f(x, y), y = g(x, z), x = h(y, z).

Proof. Let x : U ⊂ R
2 → S be a parametrization of S in p, and write x(u, v) =

(x(u, v), y(u, v), z(u, v)), (u, v) ∈ U . By condition (c) of the definition of a regular

surface, one of the Jacobian determinants

∂(x, y)

∂(u, v)
,

∂(y, z)

∂(u, v)
,

∂(z, x)

∂(u, v)

is not zero at x−1(p) = q.

Suppose first that ∂(x,y)
∂(u,v)

6= 0. Consider the map π ◦ x : U → R
2, where π is the

projection π(x, y, z) = (x, y), then π ◦ x(u, v) = (x(u, v), y(u, v)). By the inverse

function theorem, there exist neighborhood V1 of q and V2 of π ◦ x(q) such that

π ◦ x map V1 diffeomorphically onto V2. It follows that π restricted to x(V1) = V

is one-to-one and there is a smooth inverse map (π ◦ x)−1 : V2 → V1. Since x is

a homeomorphism, V is a neighborhood of p in S. Now, if we compose the map

(π ◦ x)−1 : (x, y) → (u(x, y), v(x, y)) with the function (u, v) → z(u, v), we find that

V is the graph of the smooth function z = z(u(x, y), v(x, y)) = f(x, y), and this

settles the first case. The remaining case can be treated in the same way, yielding

x = h(y, z) and y = g(x, z).

Example 9 (page 64). The one-sheet cone C, given by

z =
√

x2 + y2, (x, y) ∈ R
2,

is not a regular surface.

x

y

z

Figure 9: Cone.

Observe that we cannot conclude this from the fact alone that the natural

parametrization

(x, y) →
(

x, y,
√

x2 + y2
)

is not differentiable. There could be other parameterizations satisfying all conditions

in the definition of a regular surface.
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To show that this is not the case, suppose that C is a regular surface, then in a

neighborhood of (0, 0, 0) ∈ C, by Proposition 8, the graph of a differentiable function

having one of three form z = f(x, y), y = h(x, z), x = g(y, z). The last two forms

can be discarded by the fact that the projections of C over xz and yz planes are

not one-to-one. So the first form would have to agree, in a neighborhood of (0, 0, 0),

with z =
√

x2 + y2. Since z =
√

x2 + y2 is not differentiable at (0, 0), we know that

C is not a regular surface.

Example 10 (Surfaces of Revolution, page 76). Let S ⊂ R
3 be the set obtained by

rotating a regular smooth plane curve C about an axis in the plane which does not

meet the curve. For example, we take the xz plane as the plane of the curve and

the z axis as the rotation axis. Let

x = f(v), z = g(v), a < v < b, f(v) > 0,

be a parametrization for C and denote by u the rotation angle about the z axis.

Thus, we obtain a map

x(u, v) = (f(v) cosu, f(v) sinu, g(v))

from the open set U = {(u, v) ∈ R
2, 0 < u < 2π, a < v < b} into S.

x

y

z

u

(f(v), g(v))

parallel

meridian

rotation axis

Figure 10: A surface of revolution.

We will show that x satisfies the conditions for a parametrization in the definition

of a regular surface.

(a) Since both f(v) and g(v) are smooth functions, we know that x(u, v) is smooth.

(b) To show that x is a homeomorphism, we first show that x is one-to-one. In

fact, since (f(v), g(v)) is a parametrization of C, given z and x2+y2 = (f(v))2,

we can determine v uniquely, and so is u. Thus, x is one-to-one.
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Since (f(v), g(v)) is a parametrization of C, v is a continuous function of z

and of
√

x2 + y2 and thus a continuous function of (x, y, z).

To prove that x−1 is continuous, it remains to show that u is a continuous

function of (x, y, z). To prove this, we first observe that if u 6= π, since

f(v) = 0, we have

tan
u

2
=

sin u
2

cos u
2

=
2 sin u

2
cos u

2

2 cos2 u
2

=
sin u

1 + cosu
=

y

f(v)

1 + x
f(v)

=
y

x+
√

x2 + y2
;

hence

u = 2 tan−1

(

y

x+
√

x2 + y2

)

.

Thus, if u 6= π, u is continuous function of (x, y, z). Similarly, if u is in a small

interval about π, we obtain

u = 2 cot−1

(

y

−x+
√

x2 + y2

)

.

Thus, u is a continuous function of (x, y, z). This shows that x−1 is continuous.

(c) We compute

xu(u, v) = (−f(v) sin u, f(v) cosu, 0)

xv(u, v) = (f ′(v) cosu, f ′(v) sin u, g′(v))

xu ∧ xv = (f(v)g′(v) cosu, f(v)g′(v) sin u,−f(v)f ′(v))

‖xu ∧ xv‖ = f(v)
√

(f ′(v))2 + (g′(v))2 > 0,

so the differential map dx is one-to-one.

This regular surface S is called the surface of revolution (旋轉曲面).

Definition 11 (page 76).

(a) The curve C is called the generating curve (生成曲線) of S.

(b) The z axis is the rotation axis (旋轉軸) of S.

(c) The circles described by the pints of C are called the parallels (平行線) of S.

(d) The various positions of C on S are called the meridians (子午線) of S.
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2.3 Change of Parameters: Differential Functions

on Surface

When we try to define a smooth function (可微分函數) f : S → R at a point p on a

regular surface S, a natural way to proceed is to choose a coordinate neighborhood

of p with coordinates (u, v), and then we say that f is smooth at p if its expression

in the coordinates (u, v) has continuous partial derivatives of all orders. However,

the same point on S can belong to various coordinate neighborhoods or coordinate

systems, so it is necessary to prove that the smooth property does not depend on

the chosen coordinate systems.

Proposition 1 (Change of Parameters, page 70). Let p be a point on a regular

surface S, and let x : U ⊂ R
2 → S and y : V ⊂ R

2 → S be two parameterizations

of S such that p ∈ x(U) ∩ y(V ) = W . Then the change of coordinates map h =

x−1 ◦ y : y−1(W ) → x−1(W ) is smooth and has a smooth inverse h−1 = y−1 ◦ x :

x−1(W ) → y−1(W ).

x

y

z

u

v

U

V

x

y

h = x−1 ◦ y

x(U)

y(V )

ξ

η

x
−1(W )

y
−1(W )

p

q

r

W

S

Figure 1: Change of parameters.

In other words, if x and y are given by

x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U,

y(ξ, η) = (x(ξ, η), y(ξ, η), z(ξ, η)), (ξ, η) ∈ V,

then the change of coordinates map h, given by

u = u(ξ, η), v = v(ξ, η), (ξ, η) ∈ y−1(W )
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are smooth functions, and the inverse map h−1, given by

ξ = ξ(u, v), η = η(u, v), (u, v) ∈ x−1(W )

are also smooth. Remark that since

∂(u, v)

∂(ξ, η)
·
∂(ξ, η)

∂(u, v)
= 1,

this implies that the Jacobian determinants of both h and h−1 are nonzero every-

where.

Proof. First, we know that h = x−1 ◦ y is a homeomorphism since it is composed

of homeomorphisms. It is not possible to conclude that h is differentiable by an

analogous argument. This is because that x−1 is defined in an open subset of S, but

we do not know what is meant by a differentiable function on S.

We proceed in the following way. Let r ∈ y−1(W ) and set q = h(r). Since

x(u, v) = (x(u, v), y(u, v), z(u, v)) is a parametrization, without loss of generality,

we can assume that

∂(x, y)

∂(u, v)
(q) 6= 0.

We extend the map x to a map F : U × R → R
3 defined by

F (u, v, t) = (x(u, v), y(u, v), z(u, v) + t), (u, v) ∈ U, t ∈ R.

Geometrically, F maps a vertical cylinder C over U into a “vertical cylinder” over

x(U) by mapping each section of C with height t into the surface x(u, v)+te3, where

e3 is the unit vector of the z axis.

We know that F is differentiable and the restriction F |U×{0} = x. Furthermore,

the determinant of the differential dFq is

det(dFq) =

∣

∣

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

0
∂y

∂u

∂y

∂v
0

∂z
∂u

∂z
∂v

1

∣

∣

∣

∣

∣

∣

∣

=
∂(x, y)

∂(u, v)
(q) 6= 0.

By the inverse function theorem, there exists a neighborhood M of x(q) in R
3 such

that F−1 exists and is differentiable in M .

By the continuity of y, there exists a neighborhood N of r in V such that

y(N) ⊂ M . Notice that, restricted to N , h|N = F−1 ◦ y|N is a composition of

differentiable maps. By the chain rule, we conclude that h is differentiable at r.

Since r is arbitrary, h is differentiable on y−1(W ).

Exactly the same argument can be applied to show that the map h−1 is differ-

entiable, and for higher order differentiability.
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Once we prove the change of parameter property, we will give an explicit defini-

tion of a smooth function on a regular surface.

Definition 2 (page 72). Let f : V ⊂ S → R be a function defined in an open

subset V of a regular surface S. Then f is said to be smooth (光滑的) at p ∈ V if,

for some parametrization x : U ⊂ R
2 → S with p ∈ x(U) ⊂ V , the composition

f ◦ x : U ⊂ R
2 → R is smooth at x−1(p). We say f is smooth in V if it is smooth

at all points of V .

x

y

z

u

v

U

Vx fx(U)

R

p

x−1(p)
S

Figure 2: Define a smooth function on a regular surface.

From Proposition 1, the definition of a smooth function on a surface does not

depend on the choice of the parametrization x. In fact, if y : V ⊂ R
2 → S is another

parametrization with p ∈ y(V ), and if h = x−1 ◦ y, then

f ◦ y = f ◦ x ◦ x−1 ◦ y = f ◦ x ◦ (x−1 ◦ y) = f ◦ x ◦ h

is also smooth.

We often make the notational abuse of indicating f and f ◦ x by the symbol

f(u, v), and say that f(u, v) is the expression of f in the system of coordinates x.

Example 3 (page 72). Let S be a regular surface and V ⊂ R
3 be an open set

such that S ⊂ V . Let f : V ⊂ R
3 → R be a differentiable function. Then the

restriction of f to S is a differentiable function on S. In fact, for any p ∈ S and any

parametrization x : U ⊂ R
2 → S in p, the function f ◦ x : U → R is differentiable.

In particular, we often consider the following two functions.

(a) The height function (高度函數) relative to a unit vector v ∈ R
3 is given by

h : S → R, h(p) = p · v, where p is the position vector of p ∈ S.

(b) The square of the distance from a fixed point p0 ∈ R
3, f(p) = ‖p−p0‖

2, p ∈ S.

The need for taking the square comes from the fact that the distance ‖p− p0‖

is not differentiable at p = p0.
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The definition of differentiability can be extended to mappings between surfaces.

Definition 4 (page 73). A continuous map ϕ : V ⊂ S1 → S2 of an open set V of

a regular surface S1 to a regular surface S2 is said to be differentiable (可微分的) at

p ∈ V if given parameterizations

x1 : U1 ⊂ R
2 → S1, x2 : U2 ⊂ R

2 → S2,

with p ∈ x1(U1) and ϕ(x1(U1)) ⊂ x2(U2), the map

x−1
2 ◦ ϕ ◦ x1 : U1 → U2

is differentiable at q = x−1
1 (p).

u2

v2

u1

v1

x1 x2

ϕ

x−1
2 ◦ ϕ ◦ x1

p
ϕ(p)S1

S2

x1(U1)
V ϕ(x1(U1)) x2(U2)

U1
U2

x−1
1 (p)

Figure 3: A differentiable function between to regular surfaces.

Definition 5 (page 74). Two regular surface S1 and S2 are diffeomorphic (微分同

胚的) if there exists a differentiable map ϕ : S1 → S2 with a differentiable inverse

ϕ−1 : S2 → S1. Such a ϕ is called a diffeomorphism (微分同胚) from S1 to S2.

Example 6 (page 74). If x : U ⊂ R
2 → S is a parametrization, x−1 : x(U) → R

2 is

differentiable. In fact, for any p ∈ x(U) and any parametrization y : V ⊂ R
2 → S

in p, we have that x−1 ◦ y : y−1(W ) → x−1(W ), where W = x(U) ∩ y(V ) is

differentiable. This shows that U and x(U) are diffeomorphic. That is, every regular

surface is locally diffeomorphic to a plane.
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2.4 The Tangent Plane; the Differential of a Map

In this section, we will show that condition (c) in the definition of a regular surface

S guarantees that for every p ∈ S the set of tangent vectors to the parameterized

curves of S passing through p constitutes a plane.

Definition 1 (page 83). By a tangent vector (切向量) to S at a point p ∈ S, we mean

that the tangent vector α′(0) of a differentiable parameterized curve α : (−ε, ε) → S

with α(0) = p.

Proposition 2 (page 83). Let x : U ⊂ R → S be a parametrization of a regular

surface S and let q ∈ U . The vector subspace of dimension 2,

dxq(R
2) ⊂ R

3,

coincides with the set of tangent vectors to S at x(q).

Proof. (1) Given a tangent vector w to S at x(q), we want to find a curve β(t) on

U with β(0) = q and β′(0) ∈ R
2 such that dxq(β

′(0)) = w.

Let w be a tangent vector to S at x(q). then w = α′(0), where α : (−ε, ε) →

x(U) ⊂ S is a differentiable parameterized curve and α(0) = x(q). Then the curve

β = x−1 ◦ α : (−ε, ε) → U ⊂ R
2 is a differentiable parameterized curve. By the

definition of the differential, we have dxq(β
′(0)) = w. Hence w ∈ dxq(R

2).

( )

x

y

z

u

v

U

p = α(0)

q

β′(0)

Tp(S)

Sx
α

α0

w = α′(0)

−ε ε

Figure 4: Tangent vector to a regular surface.

(2) On the other hand, let w = dxq(v), where v ∈ R
2. It is clear that v is the

velocity vector of the curve γ : (−ε, ε) → U given by

γ(t) = tv + q, t ∈ (−ε, ε).

By the definition of the differential, w = α′(0), where α = x ◦ γ. This shows that

w is a tangent vector.
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By the above proposition, the plane dxq(R
2), which passes through x(q) = p,

does not depend on the parametrization x. This plane will be called the tangent

plane (切平面) to S at p and will be denoted by Tp(S). The choice of the parametriza-

tion x determines a basis {∂x
∂u
(q), ∂x

∂v
(q)} of Tp(S), called the basis associated to x.

Sometimes it is convenient to write xu = ∂x
∂u

and xv =
∂x
∂v
.

The coordinates of a vector w ∈ Tp(S) in the basis {∂x
∂u
, ∂x
∂v
} associated to a

parametrization x are determined as follows. Since w is he velocity vector α′(0)

of a curve α = x ◦ β, where β : (−ε, ε) → U is given by β(t) = (u(t), v(t)), with

β(0) = q = x−1(p), we have

α′(0) =
d

dt
(x ◦ β)(0) =

d

dt
x(u(t), v(t))

∣

∣

∣

∣

t=0

= xuu
′(0) + xvv

′(0) = w.

Thus, in the basis {xu(q),xv(q)}, w has coordinates (u′(0), v′(0)). where (u(t), v(t))

is the expression, in the parametrization x, of a curve whose velocity vector at t = 0

is w.

With the notion of a tangent plane, we can talk about the differential of a smooth

map between surfaces. Let S1 and S2 be two regular surfaces and let ϕ : V ⊂ S1 →

S2 be a differentiable mapping of an open set V of S1 into S2. If p ∈ V , we know

that every tangent vector w ∈ Tp(S1) is the velocity vector α′(0) of a smooth

parameterized curve α : (−ε, ε) → V with α(0) = p. The curve β = ϕ ◦ α is such

that α(0) = ϕ(p), and therefore β′(0) is a vector of Tϕ(p)(S2).

( )

−ε ε0

α ϕ

S1 S2

p

ϕ(p)

w

dϕp(w)

Figure 5: Differential of a smooth map between surfaces.

Proposition 3 (page 84). In the discussion above, given w, the vector α′(0) does

not depend on the choice of α. The map dϕp : Tp(S1) → Tϕ(p)(S2) defined by

dϕp(w) = β′(0) is a linear transformation.

Proof. Let x(u, v) and x(u, v) be parametrization in neighborhoods of p and ϕ(p),

respectively. Suppose that ϕ is expressed in these coordinates by

ϕ(u, v) = (ϕ1(u, v), ϕ2(u, v))
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and that α is expressed by

α(t) = (u(t), v(t)), t ∈ (−ε, ε).

Then β(t) = (ϕ1(u(t), v(t)), ϕ2(u(t), v(t))), and the expression of β′(0) in the basis

{xu,xv} is

β′(0) =

(

∂ϕ1

∂u
u′(0) +

∂ϕ1

∂v
v′(0),

∂ϕ2

∂u
u′(0) +

∂ϕ2

∂v
v′(0)

)

.

The relation above shows that β′(0) depends only on the map ϕ and the coordinates

(u′(0), v′(0)) of w in the basis {xu,xv}. The vector β′(0) is therefore independent

of α. Moreover, the same relation shows that

β′(0) = dϕp(w) =

[

∂ϕ1

∂u

∂ϕ1

∂v
∂ϕ2

∂u

∂ϕ2

∂v

][

u′(0)

v′(0)

]

.

That is, dϕp is a linear mapping of Tp(S1) into Tϕ(p)(S2) whose matrix in the basis

{xu,xv} of Tp(S1) and {xu,xv} of Tϕ(p)(S2) is just the matrix given above.

The linear map dϕp defined by Proposition 3 is called the differential (微分映射)

of ϕ at p ∈ S1. In a similar way we defined the differential of a smooth function

f : U → S → R at p ∈ U as a linear map dfp : Tp(S) → R.

Example 4 (page 86). Let v ∈ R
3 be a unit vector and let h : S → R, h(p) =

v · p, p ∈ S, be the height function. To compute dhp(w),w ∈ Tp(S), choose a

differentiable curve α : (−ε, ε) → S with α(0) = p,α′(0) = w. Since h(α(t)) =

α(t) · v, we obtain

dhp(w) =
d

dt
h(α(t))

∣

∣

∣

∣

t=0

= α′(0) · v = w · v.

Example 5 (page 86). Let S2 ⊂ R
3 be the unit sphere

S
2 = {(x, y, z) ∈ R

3 : x2 + y2 + z2 = 1}

and let Rz,θ : R3 → R
3 be the rotation of angle θ about the z axis. Then Rz,θ

restricted to S
2 is a differentiable map of S2. We shall compute (dRz,θ)p(w), p ∈

S
2,α′(0) = w,w ∈ Tp(S

2).

Let α : (−ε, ε) → S
2 be a smooth curve with α(0) = p,α′(0) = w. Then, since

Rz,θ is linear,

(dRz,θ)p(w) =
d

dt
(Rz,θ ◦α(t))

∣

∣

∣

∣

t=0

= Rz,θ(α
′(0)) = Rz,θ(w).

Observe that Rz,θ leaves the north pole N = (0, 0, 1) fixed, and that (dRz,θ)N :

TN (S
2) → TN (S

2) is just a rotation of angle θ in the plane TN(S
2).
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Given a point p on a regular surface S, there are two unit vectors of R3 that are

normal to the tangent plane Tp(S); each of them is called a unit normal vector (單

位法向量) at p. The unit normal vector can be derived by

N(q) =
xu ∧ xv

‖xu ∧ xv‖
(q) or −

xu ∧ xv

‖xu ∧ xv‖
(q).

Definition 6 (page 87).

(a) The straight line that passes through p and contains a unit normal vector at

p is called the normal line (法線) at p.

(b) The angle (夾角) of two intersecting surfaces at an intersection point p is the

angle of their tangent planes (or their normal lines) at p.

Example 7. Find the equations of the tangent plane and normal line at P (−2, 1, 3)

to the ellipsoid x2

4
+ y2 + z2

9
= 3.

Solution.
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2.5 The First Fundamental Form

In this section we will study further geometric structures carried by the surface

called the first fundamental form.

The natural inner product of R3 induces on each tangent plane Tp(S) of a regular

surface S an inner product 〈·, ·〉p. If w1,w2 ∈ Tp(S) ⊂ R
3, then 〈w1,w2〉p is equal

to the inner product of w1 and w2 as product in R
3.

Definition 1 (page 92). The quadratic form Ip : Tp(S) → R, defined by

Ip(w) = 〈w,w〉 = ‖w‖2 ≥ 0,

is called the first fundamental form (第一基本式) of the regular surface S ⊂ R
3 at

p ∈ S.

The first fundamental form is merely the expression of how the surface S inherits

the natural inner product of R3. In the following paragraphs, we will see that the first

fundamental form allows us to make measurements on the surface such as lengths

of curves, angles of tangent vectors, areas of regions, without referring back to the

ambient space R
3 where the surface lies.

Now we will express the first fundamental form in the basis {xu,xv} associated

to a parametrization x(u, v) at p. Since a tangent vector w ∈ Tp(S) is the tangent

vector to a parameterized curve α(t) = x(u(t), v(t)), t ∈ (−ε, ε), with α(0) =

x(u0, v0) = p, we obtain

Ip(α
′(0)) = 〈α′(0),α′(0)〉p

= 〈xu(u0, v0)u
′(0) + xv(u0, v0)v

′(0),xu(u0, v0)u
′(0) + xv(u0, v0)v

′(0)〉p

= 〈xu,xu〉p(u
′(0))2 + 2〈xu,xv〉pu

′(0)v′(0) + 〈xv,xv〉p(v
′(0))2

= E(u0, v0)(u
′(0))2 + 2F (u0, v0)u

′(0)v′(0) +G(u0, v0)(v
′(0))2.

By letting p run in the coordinate neighborhood corresponding to x(u, v) we obtain

functions

E(u, v) = 〈xu,xu〉, F (u, v) = 〈xu,xv〉, G(u, v) = 〈xv,xv〉

which are differentiable in that neighborhood.

It is more common to represent the first fundamental form by the differential

form (微分形式)

ds2 = E du2 + 2F du dv +G dv2.
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Example 2 (page 93). Find a coordinate system and the first fundamental form of

the plane P ⊂ R
3 passing through p0 = (x0, y0, z0) and containing the orthonormal

vectors w1 = (a1, a2, a3),w2 = (b1, b2, b3).

Solution.

Example 3 (page 93). Find a parametrization of the right cylinder over the circle

x2 + y2 = 1 and its first fundamental form.

Solution.

� 雖然圓柱與平面在 R
3 當中的長相不同, 但是它們的第一基本式相同。

Example 4 (page 94). Consider a helix that is given by α(u) = (cosu, sin u, au).

Through each point of the helix, draw a line parallel to the xy-plane and intersecting

the z-axis. The surface generated by these lines is called a helicoid (螺旋面) and

admits the following parametrization:

x(u, v) = (v cos u, v sin u, au), 0 < u < 2π, v ∈ R.

Compute the first fundamental form of the helix.

Solution.
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Lengths of the curve and angles of tangent vectors

Definition 5 (page 95). The arc length (弧長) s of a parameterized curve α : I → S

with α(t) = x(u(t), v(t)) is given by

s(t) =

∫ t

t0

‖α′(•)‖ d• =

∫ t

t0

√

I(α′(•)) d• =

∫ t

t0

√

E(u′)2 + 2Fu′v′ +G(v′)2 d• .

Example 6. Let C be the curve on the cone z =
√

x2 + y2 whose projection onto

the xy plane is the polar curve r = eθ, 0 ≤ θ ≤ 1. Find the length of the curve.

Solution.

Definition 7 (page 95). The angle (夾角) θ under which two parameterized regular

curves α : I → S,β : I → S intersect at t = t0 is given by

cos θ =
〈α′(t0),β

′(t0)〉

‖α′(t0)‖‖β′(t0)‖
.

In particular, the angle ϕ of the coordinate curves of a parametrization x(u, v) is

cosϕ =
〈xu,xv〉

‖xu‖‖xv‖
=

F
√
EG

.

Definition 8 (page 95). The coordinate curves of a parametrization are orthogonal

(正交) if and only if F (u, v) = 0 for all u, v. Such a parametrization is called an

orthogonal parametrization (正交參數化).

Example 9 (page 95). Compute the first fundamental form of a sphere given by

the parametrization

x(φ, θ) = (sin φ cos θ, sin φ sin θ, cosφ).

Solution.
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Example 10 (page 96). Find the curves in a neighborhood of the sphere which

make a constant angle β with the meridians θ = constant. These curves are called

loxodromes (rhumb lines, 斜駛線, 粧向線) of the sphere.

Solution.

Area of the surface, page 98

Definition 11 (page 98). Let R ⊂ S be a bounded region of a regular surface

contained in the coordinate neighborhood of the parametrization x : U ⊂ R
2 → S.

The positive number

A(R) =

∫∫

Q

‖xu ∧ xv‖ du dv, Q = x−1(R),

is called the area (面積) of R.

We have to show that the integral does not depend on the parametrization.

Suppose that x : U ⊂ R
2 → S be another parametrization with R ⊂ x(U) and set

Q = x−1(R). Let ∂(u,v)
∂(u,v)

be the Jacobian of the change of parameters h = x−1 ◦ x,

then
∫∫

Q

‖xu ∧ x v‖ du dv =

∫∫

Q

‖xu ∧ xv‖

∣

∣

∣

∣

∂(u, v)

∂(u, v)

∣

∣

∣

∣

du dv =

∫∫

Q

‖xu ∧ xv‖ du dv.

Since ‖xu ∧ xv‖
2 + 〈xu,xv〉

2 = ‖xu‖
2‖xv‖

2, we know that the integrand of A(R)

can be written as

‖xu ∧ xv‖ =
√

‖xu‖2‖xv‖2 − 〈xu,xv〉2 =
√
EG− F 2.
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Example 12. Show that the surface area of the sphere with radius R is 4πR2.

Solution.

Example 13 (page 98). Compute the area of the torus parameterized by

x(u, v) = ((a + r cosu) cos v, (a+ r cos u) sin v, r sin u), 0 < u < 2π, 0 < v < 2π.

Solution.
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