
17.3 Applications of Second-Order Differential

Equations, page 1168

Second-order differential equations have a variety of applications in science and

engineering. In this section we explore two of them: the vibration of springs and

electric circuits.

Vibrating Springs, page 1168

We consider the motion of an object with mass m at the end of a spring that is

either vertical or horizontal on a level surface. Hooke’s Law says that if the spring

is stretched or compressed x units from its normal length, then it exerts a force that

is proportional to x:

resorting force = −kx,

where k is a positive constant called the spring constant (彈簧常數). If we ignore any

external resisting forces (due to air resistance or friction), then by Newton’s Second

Law, we have

m
d2x

dt2
= −kx or m

d2x

dt2
+ kx = 0.

This is a second-order linear differential equation. Its characteristic equation is

mr2 + k = 0 with roots r = ±
√

k
m
i = ±ωi. Thus the general solution is

x(t) = c1 cosωt+ c2 sinωt = A cos(ωt+ δ),

where ω =
√

k
m

is called frequency (頻率), A =
√

c2
1
+ c2

2
is the amplitude (振幅), δ

is the phase angle (相位角). This type of motion is called simple harmonic motion

(簡諧運動).

Damped Vibrations, page 1169

We consider the motion of a spring that is subject to a frictional force (in the case of

the horizontal spring) or a damping force (in the case where a vertical spring moves

through a fluid).

We assume that the damping force is proportional to the velocity of the mass

and acts in the direction opposite to the motion. Thus

damping force = −c
dx

dt
,
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where c is a positive constant, called the damping constant (阻尼常數). Thus, in this

case, Newton’s Second Law gives

m
d2x

dt2
= −c

dx

dt
− kx or m

d2x

dt2
+ c

dx

dt
+ kx = 0.

This is a second-order linear differential equation. The characteristic equation is

mr2 + cr + k = 0. The roots are

r1 =
−c +

√
c2 − 4mk

2m
and r2 =

−c−
√
c2 − 4mk

2m
.

(a) If c2 − 4mk > 0 (overdamping), then r1 and r2 are distinct real roots and

x = c1e
r1t + c2e

r2t. Since c,m, and k are all positive, we have
√
c2 − 4mk < c,

so r1 and r2 must both be negative. This shows that x → 0 as t → ∞. Notice

that oscillations do not occur. (It’s possible for the mass to pass through the

equilibrium position once, but only once.) This is because c2 > 4mk means

that there is a strong damping force (high-viscosity oil or grease) compared

with a weak spring or small mass.

(b) If c2 − 4mk = 0 (critical damping), This case corresponds to equal roots

r1 = r2 = − c
2m

and the solution is given by x = (c1 + c2t)e
− c

2m
t. It is similar

to case (a), but the damping is just sufficient to suppress vibrations. Any

decrease in the velocity of the fluid leads to the vibrations of the following

case.

(c) If c2 − 4mk < 0 (underdamping), we have r1 = − c
2m

+ ωi and r2 = − c
2m

− ωi,

where ω =
√
4mk−c2

2m
. The solution is given by x = e−

c

2m
t(c1 cosωt + c2 sinωt).

We see that there are oscillations that are damped by the factor e−
c

2m
t. Since

c > 0 and m > 0, we have − c
2m

< 0 so e−
c

2m
t → 0 as t → ∞. This implies

that x → 0 as t → ∞; that is, the motion decays to 0 as time increases.

Forced Vibrations, page 1171

Suppose that in addition to the restoring force and the damping force, the motion

of the spring is affected by an external force F (t). Then Newton’s Second Law gives

m
d2x

dt2
+ c

dx

dt
+ kx = F (t).

A commonly type of external force is periodic force function

F (t) = F0 cosω0t where ω0 6= ω =

√

k

m
.
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In this case, and in the absence of a damping force (c = 0), we can use the method

of undetermined coefficients to get

x(t) = c1 cosωt+ c2 sinωt+
F0

m(ω2 − ω2
0
)
cosω0t.

If ω0 = ω, then the applied frequency reinforces the natural frequency and the the

result is vibrations of large amplitude. This is the phenomenon of resonance (共振).

The motion of the mass is given by

x(t) = c1 cosωt+ c2 sinωt+
F0

2mω
t sinωt.

Electric circuits, page 1172

We are in a position to analyze the circuit. It contains an electromotive force E

(supplied by a battery or generator), a resistor R, an inductor L, and a capacitor

C (電容器), in series. If the charge on the capacitor at time t is Q = Q(t), then

the current is the rate of change of Q with respect to t is I = dQ

dt
. The voltage

drops across the resister, inductor, and capacitor are RI, L dI
dt
, and Q

C
, respectively.

Kirchhoff’s voltage law says that the sum of these voltage drops is equal to the

supplied voltage:

L
dI

dt
+RI +

Q

C
= E(t).

Since I = dQ

dt
, this equation becomes

L
d2Q

dt2
+R

dQ

dt
+

Q

C
= E(t), (1)

which is a second-order linear differential equation with constant coefficient. If the

charge Q0 and the current I0 are known at time 0, then we have the initial conditions

Q(0) = Q0 and Q′(0) = I(0) = I0. This initial-value problem can be solved.

A differential equation for the current can be obtained by differentiating (1) with

respect to t and remembering that I = dQ

dt
:

L
d2I

dt2
+R

dI

dt
+

1

C
I = E ′(t).
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