17．2 Nonhomogeneous Linear Equations，page 1160

In this section we learn how to solve second－order nonhomogeneous linear differential equations with constant coefficients，that is，equations of the form

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=G(x) \tag{1}
\end{equation*}
$$

where a, b ，and c are constants and $G(x)$ is a continuous function．
Theorem 1 （page 1161）．The general solution of the nonhomogeneous differential equation（1）can be written as $y(x)=y_{h}(x)+y_{p}(x)$ ，where $y_{h}(x)$ is the general homogeneous solution and $y_{p}(x)$ is a particular solution of equation（1）．

Proof．If $y(x)$ is any solution of（1），then

$$
a\left(y-y_{p}\right)^{\prime \prime}+b\left(y-y_{p}\right)^{\prime}+c\left(y-y_{p}\right)=\left(a y^{\prime \prime}+b y^{\prime}+c y\right)-\left(a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}\right)=0 .
$$

It shows that $y-y_{p}$ is the solution of its homogeneous equation，and we write it as $y-y_{p}=y_{h}$ ，so $y(x)=y_{h}(x)+y_{p}(x)$ ．Conversely，if $y(x)=y_{h}(x)+y_{p}(x)$ ，then

$$
a\left(y_{h}+y_{p}\right)^{\prime \prime}+b\left(y_{h}+y_{p}\right)^{\prime}+c\left(y_{h}+y_{p}\right)=\left(a y_{h}^{\prime \prime}+b y_{h}^{\prime}+c y_{h}\right)+\left(a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}\right)=G .
$$

There are two methods for finding a particular solution：the method of undeter－ mined coefficients and the method of variation of parameters．

The Method of Undetermined Coefficients（未定係數法）

Since exponential function，polynomials，and trigonometric functions $\sin m x, \cos m x$ are algebraiclly closed（代數封閉），if the nonhomogeneous terms consist of those functions，we can assume the particular solution y_{p} is of these form as well．

Summary of the method of undetermined coefficients：
（1）If $G(x)=\sum_{i=0}^{n} a_{i} x^{i}$ ，then we try $y_{p}(x)=x^{j} \sum_{i=0}^{n} A_{i} x^{i}$ ．
（2）If $G(x)=\mathrm{e}^{k x} \sum_{i=0}^{n} a_{i} x^{i}$ ，then we try $y_{p}(x)=\mathrm{e}^{k x} x^{j} \sum_{i=0}^{n} A_{i} x^{i}$ ．
（3）If $G(x)=\mathrm{e}^{k x} \cos m x \sum_{i=0}^{n} a_{i} x^{i}$ or $G(x)=\mathrm{e}^{k x} \sin m x \sum_{i=0}^{n} a_{i} x^{i}$ ，then we try $y_{p}(x)=$ $x^{j} \mathrm{e}^{k x}\left(\cos m x \sum_{i=0}^{n} A_{i} x^{i}+\sin m x \sum_{i=0}^{n} B_{i} x^{i}\right)$.
－Here j is the smallest nonnegative integers $j=0,1,2$ that will ensure that no term in the assumption is a solution of the corresponding homogeneous equation．

Remark 2．The method of undetermined coefficients is straightforward but works only for a restricted class of functions $G(x)$ ．

Example 1. Solve $y^{\prime \prime}-4 y=\mathrm{e}^{x} \cos x$ by the method of undetermined coefficients.. Solution.

Example 2. Solve $y^{\prime \prime}-y=x \mathrm{e}^{x}, y(0)=2, y^{\prime}(0)=1$ by the method of undetermined coefficients.
Solution.

Example 3. Solve $y^{\prime \prime}+y^{\prime}-2 y=x+\sin 2 x, y(0)=1, y^{\prime}(0)=0$ by the method of undetermined coefficients.

Solution.

The Method of Variation of Parameters（參數變動法）

Suppose we have already solved the homogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ and written the solution as

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x) .
$$

Let $y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$ be a particular solution of the nonhomogeneous equation $a y^{\prime \prime}+b y^{\prime}+c y=G(x)$ ．Then we have

$$
\begin{aligned}
c \cdot y_{p} & =\left(u_{1} y_{1}+u_{2} y_{2}\right) \cdot c \\
b \cdot y_{p}^{\prime} & =\left(u_{1}^{\prime} y_{1}+u_{1} y_{1}^{\prime}+u_{2}^{\prime} y_{2}+u_{2} y_{2}^{\prime}\right) \cdot b \\
a \cdot y_{p}^{\prime \prime} & =\left(u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{1} y_{1}^{\prime \prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}+u_{2} y_{2}^{\prime \prime}\right) \cdot a
\end{aligned}
$$

So

$$
\begin{aligned}
a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p} & =a\left(u_{1}^{\prime \prime} y_{1}+2 u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime \prime} y_{2}+2 u_{2}^{\prime} y_{2}^{\prime}\right)+b\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right) \\
& =a\left(u_{1}^{\prime \prime} y_{1}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime \prime} y_{2}+u_{2}^{\prime} y_{2}^{\prime}\right)+a\left(u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime} y_{2}^{\prime}\right)+b\left(u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}\right) .
\end{aligned}
$$

Suppose that $u_{1}^{\prime} y_{1}+u_{2}^{\prime} y_{2}=F(x)$ ，then $u_{1}^{\prime \prime} y_{1}+u_{1}^{\prime} y_{1}^{\prime}+u_{2}^{\prime \prime} y_{2}+u_{2}^{\prime} y_{2}^{\prime}=F^{\prime}(x)$ ．So $a y_{p}^{\prime \prime}+b y_{p}^{\prime}+c y_{p}=G(x)$ becomes

$$
\left\{\begin{array}{l}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=F(x) \tag{2}\\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=\frac{G(x)-a F^{\prime}(x)-b F(x)}{a}
\end{array}\right.
$$

We can solve u_{1}^{\prime} and u_{2}^{\prime} by（2）．The function $F(x)$ gives us a freedom to get the particular solution of the nonhomogeneous equation．In particular，we can set $F(x) \equiv 0$ so that the system will be

$$
\left\{\begin{array}{l}
y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=0 \\
y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}=\frac{G(x)}{a}
\end{array} .\right.
$$

Solutions $u_{1}^{\prime}(x)$ and $u_{2}^{\prime}(x)$ are

$$
\begin{aligned}
u_{1}^{\prime}(x) & =\frac{-\frac{G(x)}{a} y_{2}(x)}{y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)} \\
u_{2}^{\prime}(x) & =\frac{\frac{G(x)}{a} y_{1}(x)}{y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)} .
\end{aligned}
$$

Thus we can get $u_{1}(x)$ and $u_{2}(x)$ after integrating the above functions．
Remark 3．The method of variation of parameters works for every continuous func－ tion $G(x)$ but is usually more difficult to apply in practice．

Example 4. Solve the equation $y^{\prime \prime}+y=\tan x, 0<x<\frac{\pi}{2}$.

Solution.

Example 5. Solve the equation $y^{\prime \prime}+3 y^{\prime}+2 y=\sin \left(\mathrm{e}^{x}\right)$ by the method of variation of parameters.

Solution.

