17.2 Nonhomogeneous Linear Equations, page 1160

In this section we learn how to solve second-order nonhomogeneous linear differential equations with constant coefficients, that is, equations of the form

$$ay'' + by' + cy = G(x), (1)$$

where a, b, and c are constants and G(x) is a continuous function.

Theorem 1 (page 1161). The general solution of the nonhomogeneous differential equation (1) can be written as $y(x) = y_h(x) + y_p(x)$, where $y_h(x)$ is the general homogeneous solution and $y_p(x)$ is a particular solution of equation (1).

Proof. If y(x) is any solution of (1), then

$$a(y - y_p)'' + b(y - y_p)' + c(y - y_p) = (ay'' + by' + cy) - (ay''_p + by'_p + cy_p) = 0.$$

It shows that $y - y_p$ is the solution of its homogeneous equation, and we write it as $y - y_p = y_h$, so $y(x) = y_h(x) + y_p(x)$. Conversely, if $y(x) = y_h(x) + y_p(x)$, then $a(y_h + y_p)'' + b(y_h + y_p)' + c(y_h + y_p) = (ay''_h + by'_h + cy_h) + (ay''_p + by'_p + cy_p) = G.$

There are two methods for finding a particular solution: the method of undetermined coefficients and the method of variation of parameters.

The Method of Undetermined Coefficients (未定係數法)

Since exponential function, polynomials, and trigonometric functions $\sin mx$, $\cos mx$ are algebraicly closed (代數封閉), if the nonhomogeneous terms consist of those functions, we can assume the particular solution y_p is of these form as well.

Summary of the method of undetermined coefficients:

(1) If
$$G(x) = \sum_{i=0}^{n} a_i x^i$$
, then we try $y_p(x) = x^j \sum_{i=0}^{n} A_i x^i$.
(2) If $G(x) = e^{kx} \sum_{i=0}^{n} a_i x^i$, then we try $y_p(x) = e^{kx} x^j \sum_{i=0}^{n} A_i x^i$.
(3) If $G(x) = e^{kx} \cos mx \sum_{i=0}^{n} a_i x^i$ or $G(x) = e^{kx} \sin mx \sum_{i=0}^{n} a_i x^i$, then we try $y_p(x) = x^j e^{kx} \left(\cos mx \sum_{i=0}^{n} A_i x^i + \sin mx \sum_{i=0}^{n} B_i x^i \right)$.

• Here j is the smallest nonnegative integers j = 0, 1, 2 that will ensure that no term in the assumption is a solution of the corresponding homogeneous equation.

Remark 2. The method of undetermined coefficients is straightforward but works only for a restricted class of functions G(x). **Example 1.** Solve $y'' - 4y = e^x \cos x$ by the method of undetermined coefficients.. Solution.

Example 2. Solve $y'' - y = xe^x$, y(0) = 2, y'(0) = 1 by the method of undetermined coefficients.

Solution.

Example 3. Solve $y'' + y' - 2y = x + \sin 2x$, y(0) = 1, y'(0) = 0 by the method of undetermined coefficients.

Solution.

The Method of Variation of Parameters (參數變動法)

Suppose we have already solved the homogeneous equation ay'' + by' + cy = 0 and written the solution as

$$y(x) = c_1 y_1(x) + c_2 y_2(x).$$

Let $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$ be a particular solution of the nonhomogeneous equation ay'' + by' + cy = G(x). Then we have

$$c \cdot y_p = (u_1y_1 + u_2y_2) \cdot c$$

$$b \cdot y'_p = (u'_1y_1 + u_1y'_1 + u'_2y_2 + u_2y'_2) \cdot b$$

$$a \cdot y''_p = (u''_1y_1 + 2u'_1y'_1 + u_1y''_1 + u''_2y_2 + 2u'_2y'_2 + u_2y''_2) \cdot a$$

 So

$$ay_p'' + by_p' + cy_p = a(u_1''y_1 + 2u_1'y_1' + u_2''y_2 + 2u_2'y_2') + b(u_1'y_1 + u_2'y_2)$$

= $a(u_1''y_1 + u_1'y_1' + u_2''y_2 + u_2'y_2') + a(u_1'y_1' + u_2'y_2') + b(u_1'y_1 + u_2'y_2).$

Suppose that $u'_1y_1 + u'_2y_2 = F(x)$, then $u''_1y_1 + u'_1y'_1 + u''_2y_2 + u'_2y'_2 = F'(x)$. So $ay''_p + by'_p + cy_p = G(x)$ becomes

$$\begin{cases} y_1 u_1' + y_2 u_2' = F(x) \\ y_1' u_1' + y_2' u_2' = \frac{G(x) - aF'(x) - bF(x)}{a} \end{cases}$$
(2)

We can solve u'_1 and u'_2 by (2). The function F(x) gives us a freedom to get the particular solution of the nonhomogeneous equation. In particular, we can set $F(x) \equiv 0$ so that the system will be

$$\begin{cases} y_1 u_1' + y_2 u_2' = 0\\ y_1' u_1' + y_2' u_2' = \frac{G(x)}{a} \end{cases}$$

Solutions $u'_1(x)$ and $u'_2(x)$ are

$$u_1'(x) = \frac{-\frac{G(x)}{a}y_2(x)}{y_1(x)y_2'(x) - y_1'(x)y_2(x)}$$
$$u_2'(x) = \frac{\frac{G(x)}{a}y_1(x)}{y_1(x)y_2'(x) - y_1'(x)y_2(x)}$$

Thus we can get $u_1(x)$ and $u_2(x)$ after integrating the above functions.

Remark 3. The method of variation of parameters works for every continuous function G(x) but is usually more difficult to apply in practice.

Example 4. Solve the equation $y'' + y = \tan x$, $0 < x < \frac{\pi}{2}$. Solution.

Example 5. Solve the equation $y'' + 3y' + 2y = \sin(e^x)$ by the method of variation of parameters.

Solution.