Chapter 17 Second－Order Differential Equations

17．1 Second－Order Linear Equation（page 1154）

A second－order linear differential equation（二階線性微分方程）has the form

$$
\begin{equation*}
P(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+Q(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+R(x) y(x)=G(x), \tag{1}
\end{equation*}
$$

where P, Q, R ，and G are continuous functions．
Definition 1 （page 1154）．
（a）If $G(x)=0$ for all x ，we say（1）homogeneous linear equations（齊次線性方程）．
（b）If $G(x) \neq 0$ for some x ，we say（1）nonhomogeneous linear equations（非齊次線性方程）．

In this section，we will focus on the solutions of the homogeneous linear equation：

$$
\begin{equation*}
P(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+Q(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+R(x) y(x)=0 \tag{2}
\end{equation*}
$$

Theorem 1 （page 1154）．If $y_{1}(x)$ and $y_{2}(x)$ are both solutions of the linear ho－ mogeneous equation（2）and c_{1} and c_{2} are any constants，then the function $y(x)=$ $c_{1} y_{1}(x)+c_{2} y_{2}(x)$ is also a solution of Equation（2）．

Proof．For $i=1,2$ ，we have $P(x) y_{i}^{\prime \prime}+Q(x) y_{i}^{\prime}+R(x) y_{i}=0$ ．So

$$
\begin{aligned}
& P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y \\
= & P(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime \prime}+Q(x)\left(c_{1} y_{1}+c_{2} y_{2}\right)^{\prime}+R(x)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
= & P(x)\left(c_{1} y_{1}^{\prime \prime}+c_{2} y_{2}^{\prime \prime}\right)+Q(x)\left(c_{1} y_{1}^{\prime}+c_{2} y_{2}^{\prime}\right)+R(x)\left(c_{1} y_{1}+c_{2} y_{2}\right) \\
= & c_{1}\left(P(x) y_{1}^{\prime \prime}+Q(x) y_{1}^{\prime}+R(x) y_{1}\right)+c_{2}\left(P(x) y_{2}^{\prime \prime}+Q(x) y_{2}^{\prime}+R(x) y_{2}\right) \\
= & c_{1} \cdot 0+c_{2} \cdot 2=0 .
\end{aligned}
$$

Definition 2 （page 1155）．Two continuous functions y_{1} and y_{2} are called linearly independent（線性獨立）if neither y_{1} nor y_{2} is a constant multiple of the other．

Theorem 2 （page 1155）．If y_{1} and y_{2} are linearly independent solutions of（2） on an interval，and $P(x)$ is never 0 ，then the general solution is given by $y(x)=$ $c_{1} y_{1}(x)+c_{2} y_{2}(x)$ ，where c_{1} and c_{2} are arbitrary constants．

Here we will discuss the second－order homogeneous linear differential equation with constant coefficients，that is P, Q ，and R are constant functions．In this case， we write the differential equation as

$$
\begin{equation*}
a y^{\prime \prime}(x)+b y^{\prime}+c y(x)=0 \tag{3}
\end{equation*}
$$

where a, b ，and c are constants and $a \neq 0$ ．
Consider $y=\mathrm{e}^{r x}$ ，where r is a constant，then $y^{\prime}=r \mathrm{e}^{r x}$ and $y^{\prime \prime}=r^{2} \mathrm{e}^{r x}$ ．So

$$
a r^{2} \mathrm{e}^{r x}+b r \mathrm{e}^{r x}+c \mathrm{e}^{r x}=0 \Rightarrow\left(a r^{2}+b r+c\right) \mathrm{e}^{r x}=0 \Rightarrow a r^{2}+b r+c=0 .
$$

Thus $y=\mathrm{e}^{r x}$ is a solution of（3）if r is a root of

$$
\begin{equation*}
a r^{2}+b r+c=0 . \tag{4}
\end{equation*}
$$

Equation（4）is called the auxiliary equation（or characteristic equation）（輔助方程，特徵方程）of the differential equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ ．

There are three cases for the roots of the equation（4）．
（1）If $b^{2}-4 a c>0$ ，then $r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ are two real distinct roots．So $y_{1}=\mathrm{e}^{r_{1} x}$ and $y_{2}=\mathrm{e}^{r_{2} x}$ are two linearly independent solutions．Hence the general solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y=c_{1} \mathrm{e}^{r_{1} x}+c_{2} \mathrm{e}^{r_{2} x}$ ．
（2）If $b^{2}-4 a c=0$ ，then $r_{1}=r_{2}=-\frac{b}{2 a}$ are two real double roots．Here we denote the double roots by r ．So $y_{1}=\mathrm{e}^{r x}$ is a solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ ．To find another solution y_{2} which is linearly independent of y_{1} ，we consider the method of reduction of order（降階法）．Let $y_{2}=u(x) y_{1}(x)$ ，where $u(x) \neq$ constant function，be another solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ ．Since

$$
\begin{aligned}
c \cdot y_{2} & =c \cdot u y_{1} \\
b \cdot y_{2}^{\prime} & =b \cdot\left(u^{\prime} y_{1}+u y_{1}^{\prime}\right) \\
a \cdot y_{2}^{\prime \prime} & =a \cdot\left(u^{\prime \prime} y_{1}+2 u^{\prime} y_{1}^{\prime}+u y_{1}^{\prime \prime}\right),
\end{aligned}
$$

we have

$$
a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}=a u^{\prime \prime} y_{1}+u^{\prime}\left(2 a y_{1}^{\prime}+b y_{1}\right)+u\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)=a u^{\prime \prime} y_{1}=0
$$

and it implies $u^{\prime \prime}(x)=0, u^{\prime}(x)=C_{1}$ ，and $u(x)=C_{1} x+C_{2}$ ．In particular， $u(x)=x$ is a candidate，and the general solution of solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y=c_{1} \mathrm{e}^{r x}+c_{2} x \mathrm{e}^{r x}$ ．
（3）If $b^{2}-4 a c \leq 0$ ，then $r_{1}=\frac{-b+\sqrt{4 a c-b^{2}} i}{2 a}$ and $r_{2}=\frac{-b-\sqrt{4 a c-b^{2}} i}{2 a}$ are two conjugate complex roots．Denote $\alpha=-\frac{b}{2 a}$ and $\beta=\frac{\sqrt{4 a c-b^{2}}}{2 a}$ ．When we consider the equation and solution in the complex sense，which is a algebraic closed field， we write the solution of the differential equation as

$$
\begin{aligned}
y & =C_{1} \mathrm{e}^{r_{1} x}+C_{2} \mathrm{e}^{r_{2} x}=C_{1} \mathrm{e}^{(\alpha+\beta i) x}+C_{2} \mathrm{e}^{(\alpha-\beta i) x} \\
& =C_{1} \mathrm{e}^{\alpha x}(\cos \beta x+i \sin \beta x)+C_{2} \mathrm{e}^{\alpha x}(\cos (-\beta x)+i \sin (-\beta x)) \\
& =\left(C_{1}+C_{2}\right) \mathrm{e}^{\alpha x} \cos \beta x+i\left(C_{1}-C_{2}\right) \mathrm{e}^{\alpha x} \sin \beta x
\end{aligned}
$$

The solution is real if and only if $c_{1}=C_{1}+C_{2}$ and $c_{2}=i\left(C_{1}-C_{2}\right)$ are real numbers，that is，$y=\mathrm{e}^{\alpha x}\left(c_{1} \cos \beta x+c_{2} \sin \beta x\right)$ is the general solution．

Initial－Value and Boundary－Value Problems，page 1158

An initial－value problem（初始值問題）for the second－order linear equation consists of finding a solution y of the differential equation that also satisfies initial conditions of the form $y\left(x_{0}\right)=y_{0}, y^{\prime}\left(x_{0}\right)=y_{1}$ ，where y_{0} and y_{1} are given constants．If P, Q, R ， and G are continuous on an interval and $P(x) \neq 0$ there，then a theorem guarantees the existence and uniqueness of a solution to this initial－value problem．

A boundary－value problem（邊界值問題）for the second－order linear equation con－ sists of finding a solution y of the differential equation that also satisfies boundary conditions of the form $y\left(x_{0}\right)=y_{0}, y\left(x_{1}\right)=y_{1}$ ．In contrast with the situation for initial－value problems，a boundary－value problem does not always have a solution．

Example 1 （page 1156，1158）．Solve the initial value problem $y^{\prime \prime}+y^{\prime}-6 y=0$ ， $y(0)=1$ and $y^{\prime}(0)=1$ ．

Solution．

Example 2 （page 1157）．Solve the boundary value problem $y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=$ $1, y(1)=3$ ．

Solution．

Example 3 (page 1158). Solve the equation $y^{\prime \prime}-6 y^{\prime}+13 y=0$.

Solution.

Example 4 (page 1158). Solve the initial-value problem $y^{\prime \prime}+y=0, y(0)=2, y^{\prime}(0)=$ 3.

Solution.

Example 5. We can view $a y^{\prime \prime}+b y^{\prime}+c y=0$ as $\left(\frac{\mathrm{d}}{\mathrm{d} x}+r_{1}\right)\left(\frac{\mathrm{d}}{\mathrm{d} x}+r_{2}\right) y=0$, where r_{1} and r_{2} are two roots of the corresponding characteristic equation. Let $Y=$ $\left(\frac{\mathrm{d}}{\mathrm{d} x}+r_{2}\right) y$. Then we can solve $\left(\frac{\mathrm{d}}{\mathrm{d} x}+r_{1}\right) Y=0$, and then we solve $\left(\frac{\mathrm{d}}{\mathrm{d} x}+r_{2}\right) y=Y$ by the integrating factor method. In this case, you will easily see that the solutions are " 2 -dimensional".

