
16.9 The Divergence Theorem, page 1141

In section 16.5, we have discussed the vector version of the following line integral

∫

C

F · n ds =

∫∫

D

(

∂P

∂x
+

∂Q

∂y

)

dA =

∫∫

D

divF dA,

where C is the positively oriented boundary curve of the plane region D. Here we

will generalize this result to vector fields on R
3, and this is called the Divergence

Theorem (散度定理).
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Figure 1: Normal line integral (left) and the Divergence Theorem (right).

The Divergence Theorem (page 1141). Let E be a simple solid region and let

S be the boundary surface of E, given with positive outward orientation. Let F be

a vector field whose component functions have continuous partial derivatives on an

open region that contains E. Then

∫∫

S

F · dS =

∫∫∫

E

divF dV.

The Divergence Theorem relates the integral of a derivative of a function (divF)

over a region to the integral of the integral of the origin function F over the boundary

of the region.

Example 1 (page 1143). Find the flux of the vector field F(x, y, z) = z i+ y j+xk

over the unit sphere x2 + y2 + z2 = 1.

Solution.
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Example 2 (page 1143). Evaluate
∫∫

S
F · dS, where

F(x, y, z) = xy i + (y2 + exz
2

) j+ sin(xy)k,

and S is the surface of the region E bounded by the parabolic cylinder z = 1 − x2

and the planes z = 0, y = 0, and y + z = 2.

Solution.

Example 3. Let

F(x, y, z) =
(

xy2 +
√

y2 + z4
)

i+
(

tan−1 x+ x2y
)

j+

(

z3

3
− ex

2+y2
)

k.

Find
∫∫

S
F · dS, where the surface S is the top half of the sphere x2 + y2 + z2 = 1

with the unit normal vectors pointing away from the origin.

Solution.
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Example 4. Let S be the sphere x2 + y2 + z2 = 1.

(a) Find a vector field such that F · n = x4 + y4 + z4 on the sphere S.

(b) Find
∫∫

S
(x4 + y4 + z4) dS.

Solution.

General version of the Divergence Theorem, page 1144

Let’s consider the region E that lies between the closed surfaces S1 and S2, where

S1 lies inside S2.
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Figure 2: General version of the divergence theorem.

Let n1 and n2 be outward normals of S1 and S2. Then the boundary surface of

E is S = S1 ∪ S2 and its normal n is given by n = −n1 or n = n2 on S2. Applying

the Divergence Theorem on S, we get
∫∫∫

E

divFdV =

∫∫

S

F · dS =

∫∫

S

F · n dS

=

∫∫

S1

F · (−n1) dS +

∫∫

S2

F · n2 dS = −

∫∫

S1

F · dS+

∫∫

S2

F · dS.
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Example 5 (page 1144). Show that the electric flux of E through any closed surface

S2 that encloses the origin is
∫∫

S2

E · dS = 4πεQ.

Solution. We let S1 be a small sphere with radius r0 and center the origin. For the

electric field E(x) = εQ

|x|3
x, we have divE = 0. So

∫∫

S2

E · dS =

∫∫

S1

E · dS+

∫∫∫

E

divE dV =

∫∫

S1

E · dS =

∫∫

S1

E · n dS.

We can compute the surface integral over S1 because S1 is a sphere. The normal

vector at x is x

|x|
. Therefore

E · n =
εQ

|x|3
x ·

(

x

|x|

)

=
εQ

|x|4
x · x =

εQ

|x|2
=

εQ

r20
.

Thus we have
∫∫

S2

E · dS =

∫∫

S1

E · dS =
εQ

r20

∫∫

S1

1 dS =
εQ

r20
Area(S1) =

εQ

r20
4πr20 = 4πεQ.

Appendix, page 1141

Proof of the Divergence Theorem for simple solid regions. Let F = P i+Q j+Rk.

Then divF = ∂P
∂x

+ ∂Q

∂y
+ ∂R

∂z
, so

∫∫∫

E

divF dV =

∫∫∫

E

∂P

∂x
dV +

∫∫∫

E

∂Q

∂y
dV +

∫∫∫

E

∂R

∂z
dV.

If n is the unit outward normal of S, then we have

∫∫

S

F · dS =

∫∫

S

F · n dS =

∫∫

S

(P i +Q j+R k) · n dS

=

∫∫

S

P i · n dS +Q j · n dS +Rk · n dS.

So, to prove the Divergence Theorem, it suffices to prove the following equations:

∫∫

S

P i · n dS =

∫∫∫

E

∂P

∂x
dV,

∫∫

S

Q j · n dS =

∫∫∫

E

∂Q

∂y
dV,

∫∫

S

R k · n dS =

∫∫∫

E

∂R

∂z
dV. (1)

Here we only prove (1) and E is a type z region:

E = {(x, y, z)|(x, y) ∈ D, z1(x, y) ≤ z ≤ z2(x, y)},
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By the Fundamental Theorem of Calculus, we have

∫∫∫

E

∂R

∂z
dV =

∫∫

D

(

∫ z=z2(x,y)

z=z1(x,y)

∂R

∂z
(x, y, z) dz

)

dA

=

∫∫

D

(R(x, y, z2(x, y))− R(x, y, z1(x, y))) dA.

On the other hand, the boundary surface S consists of three pieces: the bottom sur-

face S1, the top surface S2, and a vertical surface S3, which lies above the boundary

curve of D.
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Figure 3: Proof of the Divergence Theorem.

We write
∫∫

S

R k · n dS =

∫∫

S1

R k · n dS +

∫∫

S2

R k · n dS +

∫∫

S3

R k · n dS.

On S3, we have k · n = 0, because k is vertical and n is horizontal, and so
∫∫

S3

R k · n dS =

∫∫

S3

0 dS = 0.

The equation of S2 is z = z2(x, y), (x, y) ∈ D, and the outward normal n points

upward, so we have
∫∫

S2

Rk · n dS =

∫∫

D

R(x, y, z2(x, y)) dA.

On S1 we have z = z1(x, y), but here the outward normal n points downward, so we

multiply by −1:
∫∫

S1

Rk · n dS = −

∫∫

D

R(x, y, z1(x, y)) dA.

Therefore,
∫∫

S

R k · n dS =

∫∫

D

(R(x, y, z2(x, y))− R(x, y, z1(x, y))) dA.
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