16.9 The Divergence Theorem, page 1141

In section 16.5, we have discussed the vector version of the following line integral

[ Fomas= [ (a—P+a—Q>dA://[)dideA,

where C' is the positively oriented boundary curve of the plane region D. Here we
will generalize this result to vector fields on R®, and this is called the Divergence

Theorem (BUEEH).
Y

Figure 1: Normal line integral (left) and the Divergence Theorem (right).

The Divergence Theorem (page 1141). Let E be a simple solid region and let
S be the boundary surface of E, given with positive outward orientation. Let F be
a vector field whose component functions have continuous partial derivatives on an

open region that contains E. Then

J[pas= [[[ awrav

The Divergence Theorem relates the integral of a derivative of a function (div F)
over a region to the integral of the integral of the origin function F over the boundary

of the region.

Example 1 (page 1143). Find the flux of the vector field F(z,y,2) = zi+yj+xk
over the unit sphere 22 + y2 + 22 = 1.

Solution.
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Example 2 (page 1143). Evaluate [ F -dS, where
F(x,y,2) =ayi+ (y* + e“z)j + sin(xy) k,

and S is the surface of the region F bounded by the parabolic cylinder z = 1 — 22
and the planes z =0,y =0, and y + 2z = 2.

Solution.

Example 3. Let

3
F(z,y,2) = (Zl?yz + VY2 + 24) i+ (tan 'z +2%y)j+ (’Z_ _ ex2+y2) k.

3
Find [[;F - dS, where the surface S is the top half of the sphere 2 + y* + 2° = 1

with the unit normal vectors pointing away from the origin.

Solution.
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Example 4. Let S be the sphere 2% + y? + 22 = 1.
(a) Find a vector field such that F-n = 2% + y* + 2% on the sphere S.
(b) Find [fs(z* +y* + 2*)dS.

Solution.

General version of the Divergence Theorem, page 1144

Let’s consider the region E that lies between the closed surfaces S; and S5, where
S1 lies inside S,.

n,

G

Figure 2: General version of the divergence theorem.

Let n; and ny be outward normals of S; and S5. Then the boundary surface of
E is § = 57 US; and its normal n is given by n = —n; or n = ny on Sy. Applying

the Divergence Theorem on S, we get

//[EdiVFdVI//SF'dS://SF~ndS
://SlF-(—nl)deL//st-ngdS:—//SlF.ds_l_//&F'dS'
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Example 5 (page 1144). Show that the electric flux of E through any closed surface
Sy that encloses the origin is [[ E-dS = 47eQ.

Solution. We let S; be a small sphere with radius ry and center the origin. For the
electric field E(x) = E \3X we have divE = 0. So

/L2E.dS://SlE~dS+///EdivEdV://SlE.dS://SIE_ndS

We can compute the surface integral over S; because S; is a sphere. The normal

vector at x is ﬁ Therefore

n =
x|

[x[?

E ﬁx-<x):€Qx-x eQ:eQ

Thus we have

// E-dS:// ds =2 // 1ds = =2 Area(Sl)——?élwrg:ZlﬂeQ.
Sa S1 S1 o

Appendix, page 1141

Proof of the Divergence Theorem for simple solid regions. Let F = Pi+ (Qj+ Rk.
Then divF = 8:2 P90 e Q4 % SO

///ddeV // —dV+// —dV+// —dV

If n is the unit outward normal of S, then we have

//SF'dSZ//SF'ndS://S(PiﬂLQjﬂLRk)-ndS

://Pi.ndS+Qj-ndS+Rk-ndS.
S

So, to prove the Divergence Theorem, it suffices to prove the following equations:

[frvnss [l o [fosmas= [ 5
//Rk nds = ///—dV (1)

Here we only prove (1) and E is a type z region:

E={(z,y,2)|(z,y) € D, z1(z,y) < z < z(z,y)},
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By the Fundamental Theorem of Calculus, we have

TS = ] (L o) a
= [[ (R 260.90) = R alz ) a

On the other hand, the boundary surface S consists of three pieces: the bottom sur-
face Sp, the top surface Sy, and a vertical surface S3, which lies above the boundary

curve of D.

Figure 3: Proof of the Divergence Theorem.

We write

//Rk~ndS:// Rk-ndS—l—// Rk-ndS—i—// Rk -ndS.
S Sl SQ S3

On S3, we have k - n = 0, because k is vertical and n is horizontal, and so

// Rk-ndS:// 0dS =0.
53 SS

The equation of Sy is z = z3(x,y), (z,y) € D, and the outward normal n points

//SQRk-ndS://DR(z’y’ZQ(x’y))dA‘

On S; we have z = z(x,y), but here the outward normal n points downward, so we

// Rk -ndS = —// R(z,y, z1(z,y)) dA.
S1 D
Therefore,

//SRk.ndS = //D(R(x,y,zg(x,y)) — R(z,y, z1(z,y))) dA.

upward, so we have

multiply by —1:
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