16．9 The Divergence Theorem，page 1141

In section 16．5，we have discussed the vector version of the following line integral

$$
\int_{C} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} s=\iint_{D}\left(\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}\right) \mathrm{d} A=\iint_{D} \operatorname{div} \mathbf{F} \mathrm{~d} A
$$

where C is the positively oriented boundary curve of the plane region D ．Here we will generalize this result to vector fields on \mathbb{R}^{3} ，and this is called the Divergence Theorem（散度定理）．

Figure 1：Normal line integral（left）and the Divergence Theorem（right）．

The Divergence Theorem（page 1141）．Let E be a simple solid region and let S be the boundary surface of E ，given with positive outward orientation．Let \mathbf{F} be a vector field whose component functions have continuous partial derivatives on an open region that contains E ．Then

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iiint_{E} \operatorname{div} \mathbf{F} \mathrm{~d} V
$$

The Divergence Theorem relates the integral of a derivative of a function（div \mathbf{F} ） over a region to the integral of the integral of the origin function \mathbf{F} over the boundary of the region．

Example 1 （page 1143）．Find the flux of the vector field $\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$ over the unit sphere $x^{2}+y^{2}+z^{2}=1$ ．

Solution．

Example 2 (page 1143). Evaluate $\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$, where

$$
\mathbf{F}(x, y, z)=x y \mathbf{i}+\left(y^{2}+\mathrm{e}^{x z^{2}}\right) \mathbf{j}+\sin (x y) \mathbf{k}
$$

and S is the surface of the region E bounded by the parabolic cylinder $z=1-x^{2}$ and the planes $z=0, y=0$, and $y+z=2$.

Solution.

Example 3. Let

$$
\mathbf{F}(x, y, z)=\left(x y^{2}+\sqrt{y^{2}+z^{4}}\right) \mathbf{i}+\left(\tan ^{-1} x+x^{2} y\right) \mathbf{j}+\left(\frac{z^{3}}{3}-\mathrm{e}^{x^{2}+y^{2}}\right) \mathbf{k}
$$

Find $\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$, where the surface S is the top half of the sphere $x^{2}+y^{2}+z^{2}=1$ with the unit normal vectors pointing away from the origin.

Solution.

Example 4. Let S be the sphere $x^{2}+y^{2}+z^{2}=1$.
(a) Find a vector field such that $\mathbf{F} \cdot \mathbf{n}=x^{4}+y^{4}+z^{4}$ on the sphere S.
(b) Find $\iint_{S}\left(x^{4}+y^{4}+z^{4}\right) \mathrm{d} S$.

Solution.

General version of the Divergence Theorem, page 1144

Let's consider the region E that lies between the closed surfaces S_{1} and S_{2}, where S_{1} lies inside S_{2}.

Figure 2: General version of the divergence theorem.

Let \mathbf{n}_{1} and \mathbf{n}_{2} be outward normals of S_{1} and S_{2}. Then the boundary surface of E is $S=S_{1} \cup S_{2}$ and its normal \mathbf{n} is given by $\mathbf{n}=-\mathbf{n}_{1}$ or $\mathbf{n}=\mathbf{n}_{2}$ on S_{2}. Applying the Divergence Theorem on S, we get

$$
\begin{aligned}
\iiint_{E} \operatorname{div} \mathbf{F} \mathrm{~d} V & =\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S \\
& =\iint_{S_{1}} \mathbf{F} \cdot\left(-\mathbf{n}_{1}\right) \mathrm{d} S+\iint_{S_{2}} \mathbf{F} \cdot \mathbf{n}_{2} \mathrm{~d} S=-\iint_{S_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}+\iint_{S_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{S} .
\end{aligned}
$$

Example 5 (page 1144). Show that the electric flux of \mathbf{E} through any closed surface S_{2} that encloses the origin is $\iint_{S_{2}} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}=4 \pi \varepsilon Q$.

Solution. We let S_{1} be a small sphere with radius r_{0} and center the origin. For the electric field $\mathbf{E}(\mathbf{x})=\frac{\varepsilon Q}{|\mathbf{x}|^{3}} \mathbf{x}$, we have $\operatorname{div} \mathbf{E}=0$. So

$$
\iint_{S_{2}} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}=\iint_{S_{1}} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}+\iiint_{E} \operatorname{div} \mathbf{E} \mathrm{~d} V=\iint_{S_{1}} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}=\iint_{S_{1}} \mathbf{E} \cdot \mathbf{n} \mathrm{~d} S .
$$

We can compute the surface integral over S_{1} because S_{1} is a sphere. The normal vector at \mathbf{x} is $\frac{\mathbf{x}}{|\mathbf{x}|}$. Therefore

$$
\mathbf{E} \cdot \mathbf{n}=\frac{\varepsilon Q}{|\mathbf{x}|^{3}} \mathbf{x} \cdot\left(\frac{\mathbf{x}}{|\mathbf{x}|}\right)=\frac{\varepsilon Q}{|\mathbf{x}|^{4}} \mathbf{x} \cdot \mathbf{x}=\frac{\varepsilon Q}{|\mathbf{x}|^{2}}=\frac{\varepsilon Q}{r_{0}^{2}}
$$

Thus we have

$$
\iint_{S_{2}} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}=\iint_{S_{1}} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}=\frac{\varepsilon Q}{r_{0}^{2}} \iint_{S_{1}} 1 \mathrm{~d} S=\frac{\varepsilon Q}{r_{0}^{2}} \operatorname{Area}\left(S_{1}\right)=\frac{\varepsilon Q}{r_{0}^{2}} 4 \pi r_{0}^{2}=4 \pi \varepsilon Q
$$

Appendix, page 1141

Proof of the Divergence Theorem for simple solid regions. Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. Then $\operatorname{div} \mathbf{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}$, so

$$
\iiint_{E} \operatorname{div} \mathbf{F} \mathrm{~d} V=\iiint_{E} \frac{\partial P}{\partial x} \mathrm{~d} V+\iiint_{E} \frac{\partial Q}{\partial y} \mathrm{~d} V+\iiint_{E} \frac{\partial R}{\partial z} \mathrm{~d} V
$$

If \mathbf{n} is the unit outward normal of S, then we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S} & =\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S=\iint_{S}(P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}) \cdot \mathbf{n} \mathrm{d} S \\
& =\iint_{S} P \mathbf{i} \cdot \mathbf{n} \mathrm{~d} S+Q \mathbf{j} \cdot \mathbf{n} \mathrm{~d} S+R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S
\end{aligned}
$$

So, to prove the Divergence Theorem, it suffices to prove the following equations:

$$
\begin{align*}
& \iint_{S} P \mathbf{i} \cdot \mathbf{n} \mathrm{~d} S=\iiint_{E} \frac{\partial P}{\partial x} \mathrm{~d} V, \quad \iint_{S} Q \mathbf{j} \cdot \mathbf{n} \mathrm{~d} S=\iiint_{E} \frac{\partial Q}{\partial y} \mathrm{~d} V \\
& \iint_{S} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S=\iiint_{E} \frac{\partial R}{\partial z} \mathrm{~d} V . \tag{1}
\end{align*}
$$

Here we only prove (1) and E is a type z region:

$$
E=\left\{(x, y, z) \mid(x, y) \in D, z_{1}(x, y) \leq z \leq z_{2}(x, y)\right\}
$$

By the Fundamental Theorem of Calculus, we have

$$
\begin{aligned}
\iiint_{E} \frac{\partial R}{\partial z} \mathrm{~d} V & =\iint_{D}\left(\int_{z=z_{1}(x, y)}^{z=z_{2}(x, y)} \frac{\partial R}{\partial z}(x, y, z) \mathrm{d} z\right) \mathrm{d} A \\
& =\iint_{D}\left(R\left(x, y, z_{2}(x, y)\right)-R\left(x, y, z_{1}(x, y)\right)\right) \mathrm{d} A .
\end{aligned}
$$

On the other hand, the boundary surface S consists of three pieces: the bottom surface S_{1}, the top surface S_{2}, and a vertical surface S_{3}, which lies above the boundary curve of D.

Figure 3: Proof of the Divergence Theorem.

We write

$$
\iint_{S} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S=\iint_{S_{1}} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S+\iint_{S_{2}} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S+\iint_{S_{3}} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S
$$

On S_{3}, we have $\mathbf{k} \cdot \mathbf{n}=0$, because \mathbf{k} is vertical and \mathbf{n} is horizontal, and so

$$
\iint_{S_{3}} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S=\iint_{S_{3}} 0 \mathrm{~d} S=0 .
$$

The equation of S_{2} is $z=z_{2}(x, y),(x, y) \in D$, and the outward normal \mathbf{n} points upward, so we have

$$
\iint_{S_{2}} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S=\iint_{D} R\left(x, y, z_{2}(x, y)\right) \mathrm{d} A .
$$

On S_{1} we have $z=z_{1}(x, y)$, but here the outward normal \mathbf{n} points downward, so we multiply by -1 :

$$
\iint_{S_{1}} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S=-\iint_{D} R\left(x, y, z_{1}(x, y)\right) \mathrm{d} A .
$$

Therefore,

$$
\iint_{S} R \mathbf{k} \cdot \mathbf{n} \mathrm{~d} S=\iint_{D}\left(R\left(x, y, z_{2}(x, y)\right)-R\left(x, y, z_{1}(x, y)\right)\right) \mathrm{d} A .
$$

