16．8 Stokes＇Theorem，page 1134

Stokes＇Theorem can be regarded as a generalization of Green＇s Theorem．
－Green＇s Theorem relates a double integral over a plane region D to a line integral around its plane boundary curve．
－Stokes＇Theorem relates a surface integral over a surface S to a line integral around the boundary curve（space curve）of S ．

Figure 1：Green＇s Theorem（left）and Stokes＇Theorem（right）．
Figure 1 （right）shows an oriented surface with unit normal vector \mathbf{n} ．The orientation of S induces the positive orientation of the boundary curve C（邊界曲線之正的定向）shown in the figure．

曲面的法向量 \mathbf{n} 和邊界曲線 C 的定向滿足「右手定則」爲正的定向。
Stokes＇Theorem（page 1134）．Let S be an oriented piecewise smooth surface that is bounded by a simple，closed，piecewise smooth boundary curve C with posi－ tive orientation．Let \mathbf{F} be a vector field whose components have continuous partial derivatives on an open region on \mathbb{R}^{3} that contains S ．Then

$$
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S} .
$$

（a）Since

$$
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\oint_{C} \mathbf{F} \cdot \mathbf{T} \mathrm{~d} s \quad \text { and } \quad \iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S,
$$

Stokes＇Theorem says that the line integral around the boundary curve of S of the tangential component of \mathbf{F} is equal to the surface integral over S of the normal component of the curl of \mathbf{F} ．
（b）Green＇s Theorem is the special case of Stokes＇Theorem，where S is flat and lies in the $x y$－plane with upward orientation，and the unit normal is \mathbf{k} ，so

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y & =\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A \\
& =\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathbf{k} \mathrm{~d} A .
\end{aligned}
$$

Example 1 (page 1136). Evaluate $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$, where $\mathbf{F}(x, y, z)=-y^{2} \mathbf{i}+x \mathbf{j}+z^{2} \mathbf{k}$ and C is the curve of intersection of the plane $y+z=2$ and the cylinder $x^{2}+y^{2}=1$. (Orient C to be counterclockwise when viewed from above.)

Solution.

Solution 2.

Example 2 (page 1137). Compute the integral $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$, where $\mathbf{F}(x, y, z)=$ $x z \mathbf{i}+y z \mathbf{j}+x y \mathbf{k}$ and S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane.

Solution.

Solution 2.

Solution 3.

若兩定向曲面具有相同的邊界，則面積分 $\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{dS}$ 的值相同（微積分基本定理）。Example 3．Suppose that S consists of the part of cylinder $x^{2}+y^{2}=1,0 \leq z \leq 1$ and the lid $x^{2}+y^{2} \leq 1, z=1$ ．Let $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}+x^{2} \mathbf{k}$ ．Evaluate $\iint_{S} \nabla \times \mathbf{F} \cdot \mathbf{n} \mathrm{d} S$ ， where S is oriented outward viewed from the origin．

Solution．

Solution 2.

Example 4．Suppose that C is the circle that is the intersection of the plane passing through the origin and the sphere $x^{2}+y^{2}+z^{2}=4$ ．Let $\mathbf{F}=z \mathbf{i}+x \mathbf{j}+y \mathbf{k}$ ．Find the equation of the plane such that the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ attains the maximum．

Solution．

Appendix, page 1135

Proof of a special case of Stokes' Theorem. We assume that the equation of S is $z=z(x, y),(x, y) \in D$, where $z(x, y)$ has continuous second order partial derivatives and D is a simple plane region whose boundary curve C_{1} corresponds to C. If the orientation of S is upward, then the positive orientation of C corresponds to the positive orientation of C_{1}. So we have $\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+z(x, y) \mathbf{k}$ and

$$
\begin{aligned}
& \mathbf{r}_{x}(x, y)=1 \mathbf{i}+0 \mathbf{j}+z_{x} \mathbf{k}, \quad \mathbf{r}_{y}(x, y)=0 \mathbf{i}+1 \mathbf{j}+z_{y} \mathbf{k} \\
& \mathbf{r}_{x} \times \mathbf{r}_{y}(x, y)=-z_{x} \mathbf{i}-z_{y} \mathbf{j}+1 \mathbf{k}
\end{aligned}
$$

Figure 2: Proof of Stokes' Theorem.
Let $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$. We first compute

$$
\iint_{S} \operatorname{curl} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{D}\left(-\left(R_{y}-Q_{z}\right) z_{x}-\left(P_{z}-R_{x}\right) z_{y}+\left(Q_{x}-P_{y}\right)\right) \mathrm{d} A
$$

where the partial derivatives of P, Q, and R are evaluated at $(x, y, z(x, y))$. On the other hand, if C_{1} is given by $\mathbf{r}_{1}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}$, where t is from a to b, then C is given by $\mathbf{r}(t)=x(t) \mathbf{i}+y(t) \mathbf{j}+z(x(t), y(t)) \mathbf{k}$, where t is from a to b. So

$$
\begin{aligned}
& \int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{a}^{b}\left(P x^{\prime}(t)+Q y^{\prime}(t)+R z^{\prime}(t)\right) \mathrm{d} t \\
= & \int_{a}^{b}\left(P x^{\prime}(t)+Q y^{\prime}(t)+R\left(z_{x} x^{\prime}(t)+z_{y} y^{\prime}(t)\right)\right) \mathrm{d} t \\
= & \int_{a}^{b}\left(\left(P+R z_{x}\right) x^{\prime}(t)+\left(Q+R z_{y}\right) y^{\prime}(t)\right) \mathrm{d} t=\int_{C_{1}}\left(P+R z_{x}\right) \mathrm{d} x+\left(Q+R z_{y}\right) \mathrm{d} y \\
= & \iint_{D}\left(\frac{\partial}{\partial x}\left(Q+R z_{y}\right)-\frac{\partial}{\partial y}\left(P+R z_{x}\right)\right) \mathrm{d} A . \quad \text { (by Green's Theorem) }
\end{aligned}
$$

Using the Chain Rule carefully, that is, P, Q, and R are functions of x, y, and z and z itself a function of x and y, we will get

$$
\begin{aligned}
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} & =\iint_{D}\binom{\left(Q_{x}+Q_{z} z_{x}+R_{x} z_{y}+R_{z} z_{x} z_{y}+R z_{x y}\right)}{-\left(P_{y}+P_{z} z_{y}+R_{y} z_{x}+R_{z} z_{y} z_{x}+R z_{y x}\right)} \mathrm{d} A \\
& =\iint_{D}\left(-\left(R_{y}-Q_{z}\right) z_{x}-\left(P_{z}-R_{x}\right) z_{y}+\left(Q_{x}-P_{y}\right)\right) \mathrm{d} A
\end{aligned}
$$

