
16.7 Surface Integrals, page 1122

The relationship between surface integrals and surface area is much the same as the

relationship between line integrals and arc length.

Suppose f is a function of three variables whose domain includes a surface S.

First, we will define the surface integral of f over S.

Surface integrals of functions (第一類曲面積分), page 1123

Suppose that a surface S has a vector equation

r(u, v) = x(u, v) i+ y(u, v) j+ z(u, v)k, (u, v) ∈ D.

(1) We first assume that the parameter domain D is a rectangle and we divide it

into subrectangles Rij with dimensions ∆u and ∆v. The surface S is divided

into corresponding patches Sij .

(2) We evaluate f at a point P ∗
ij in each patch, multiply by the area ∆Sij .

(3) We form the Riemann sum
m
∑

i=1

n
∑

j=1

f(P ∗
ij)∆Sij .

(4) Taking the limit as the number of patches increasing and define the surface

integral of f over the surface S (第一類曲面積分) as

∫∫

S

f(x, y, z) dS = lim
m,n→∞

m
∑

i=1

n
∑

j=1

f(P ∗
ij)∆Sij =

∫∫

D

f(r(u, v))|ru × rv| dA.

� 和第一類曲線積分比較:
∫

C
f(x, y, z) ds =

∫ b

a
f(r(t))|r′(t)| dt.

Example 1 (page 1123). Compute the surface integral
∫∫

S
x2 dS, where S is the

unit sphere x2 + y2 + z2 = 1.

Solution.
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Surface integrals have applications. For example, if a thin sheet has the shape

of a surface S and density ρ(x, y, z), then the total mass (質量) of the sheet is

m =

∫∫

S

ρ(x, y, z) dS.

The center of mass (質心) of the sheet is

x̄ =
1

m

∫∫

S

xρ(x, y, z) dS ȳ =
1

m

∫∫

S

yρ(x, y, z) dS z̄ =
1

m

∫∫

S

zρ(x, y, z) dS.

Graph, page 1124

Example 2 (page 1124). Any surface S with equation z = z(x, y) can be regarded

as a parameter surface with parametric equations

x = x y = y z = z(x, y).

So we have

Similar formulas apply when we project S onto the yz-plane or xz-plane.

(a) If S is a surface with equation y = y(x, z) and D is its projection onto the

xz-plane, then

∫∫

S

f(x, y, z) dS =

∫∫

D

f(x, y(x, z), z)

√

1 +

(

∂y

∂x

)2

+

(

∂y

∂z

)2

dA.

(b) If S is a surface with equation x = x(y, z) and D is its projection onto the

xz-plane, then

∫∫

S

f(x, y, z) dS =

∫∫

D

f(x(y, z), y, z)

√

1 +

(

∂x

∂y

)2

+

(

∂x

∂z

)2

dA.

If S is a piecewise smooth surface, that is, a finite union of smooth surfaces

S1, S2, . . . , Sn that intersect only along their boundaries, then the surface integral of

f over S is defined by
∫∫

S

f(x, y, z) dS =

∫∫

S1

f(x, y, z) dS + · · ·+

∫∫

Sn

f(x, y, z) dS.
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Example 3 (page 1125). Evaluate
∫∫

S
z dS, where S is the surface whose sides S1

are given by the cylinder x2 + y2 = 1, whose bottom S2 is the disk x2 + y2 ≤ 1 in

the plane z = 0, and whose top S3 is the part of the plane z = 1+ x that lies above

S2.

Solution.
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Oriented surfaces, page 1127

To define surface integrals of vector fields, we need to rule out nonorientable surfaces

such as the Möbius strip. The Möbius strip is a “one-sided surface.”
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Figure 1: Möbius strip.

From now on we consider only orientable (two-sided) surfaces. We start with

a surface S that has a tangent plane at every point (x, y, z) on S except at any

boundary point. There are two unit normal vectors n1 and n2 = −n1 at (x, y, z).

Definition 4 (page 1127). If it is possible to choose a unit normal vector n at every

such point (x, y, z) so that n varies continuously over S, then S is called an oriented

surface (可定向的曲面) and the given choice of n provides S with an orientation (定

向). There are two possible orientations for any orientable surface.

n
n

n

n

n

n
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Figure 2: Oriented surfaces.

(a) If S is a smooth orientable surface given by r(u, v), then the orientation of the

unit normal vector is

n =
ru × rv
|ru × rv|

.

and opposite orientation is given by −n.

(b) For a surface S given as the graph of z = z(x, y), we can get the unit normal

vector

n =
−zx i− zy j+ k
√

1 + z2x + z2y
.

The unit normal vector gives the upward orientation of the surface.

(c) For a closed surface S (the boundary of a solid region E), the convention is

that the positive orientation is the normal vectors point outward from E, and

inward-pointing normals give the negative orientation.
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Surface integrals of vector fields (第二類曲面積分), page 1128

Suppose that S is an orientated surface with unit normal vector n, and imagine a

fluid with density ρ(x, y, z) and velocity field v(x, y, z) flowing through S. Then the

rate of flow (mass per unit time) per unit area is ρv. If we divide S into small patches

Sij , then Sij is nearly planar and so we can approximate the mass of fluid per unit

time crossing Sij in the direction of the normal n by the quantity (ρv · n)A(Sij),

where ρ,v, and n are evaluated at some point on Sij. By summing these quantities

and taking the limit, we get the surface integral of the function ρv · n over S:
∫∫

S

ρv · n dS =

∫∫

S

ρ(x, y, z)v(x, y, z) · n(x, y, z) dS.

If we write F = ρv, then F is a vector field on R
3 and the integral becomes

∫∫

S
F ·n dS. Such surface integral is called the surface integral (第二類曲面積分), or

flux integral (通量積分) of F over S.

Definition 5 (page 1129). If F is a continuous vector field defined on an oriented

surface S with unit normal vector n, then the surface integral of F over S is
∫∫

S

F · dS =

∫∫

S

F · n dS.

This integral is also called the flux (通量) of F across S.

The surface integral of a vector field over S is equal to the surface integral of its

normal component over S.

(a) If S is given by a vector function r(u, v), then we have
∫∫

S

F · dS =

∫∫

S

F · n dS =

∫∫

D

(

F(r(u, v)) · ±
ru × rv
|ru × rv|

)

|ru × rv| dA

=

∫∫

D

F(r(u, v)) · (±ru × rv) dA.

(b) If a surface S is given by a graph z = z(x, y), then we can use vector function

r(x, y) = x i + y j + g(x, y)k and get
∫∫

S

F · dS =

∫∫

S

F · n dS =

∫∫

D

(P i+Q j +Rk) · (∓zx i∓ zy j± k) dA

=

∫∫

D

(∓Pgx ∓Qgy ±R) dA.

(c) Is a surface S is a level surface g(x, y, z) = 0, then n = ± ∇g

|∇g|
, and

∫∫

S

F · dS =

∫∫

D

F ·

(

±
∇g

|∇g|

)

|∇g|

|∇g · p|
dA =

∫∫

D

F ·

(

±
∇g

|∇g · p|

)

dA,

where p is the unit normal vector to the plane region.
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Example 6 (page 1130). Find the flux of the vector field F(x, y, z) = z i+ y j+xk

across the unit sphere x2 + y2 + z2 = 1.

Solution.

Example 7 (page 1130). Evaluate
∫∫

S
F ·dS, where F = y i+x j+ z k and S is the

boundary of the solid region E enclosed by the paraboloid z = 1− x2 − y2 and the

plane z = 0.

Solution.
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Appendix, page 1131

Definition 8 (page 1131). If E is an electric field, then the surface integral
∫∫

S
E·dS

is called the electric flux of E (電通量) through the surface S.

One of the important laws of electrostatics is Gauss’s Law (高斯定律), which says

that the net charge enclosed by a closed surface S is

Q = ε0

∫∫

S

E · dS,

where ε0 is a constant (called the permittivity of free space真空電容率) that depends

on the units used. Therefore, if the vector field F = z i + y j + xk represents an

electric field, we can conclude that the charge enclosed by S is Q = 4

3
πε0.

Another application of surface integrals occurs in the study of heat flow. Suppose

the temperature at a point (x, y, z) in a body is u(x, y, z). Then the heat flow is

defined as the vector field

F = −K∇u,

where K is an experimentally determined constant called the conductivity of the

substance. The rate of heat flow across the surface S in the body is then given by

the surface integral

∫∫

S

F · dS = −K

∫∫

S

∇u · dS.

Example 9 (page 1132). The temperature u in a metal ball is proportional to the

square of the distance from the center of the ball. Find the rate of heat flow across

a sphere S of radius R with center at the center of the ball.

Solution.
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