16．7 Surface Integrals，page 1122

The relationship between surface integrals and surface area is much the same as the relationship between line integrals and arc length．

Suppose f is a function of three variables whose domain includes a surface S ． First，we will define the surface integral of f over S ．

Surface integrals of functions（第一類曲面積分），page 1123

Suppose that a surface S has a vector equation

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in D
$$

（1）We first assume that the parameter domain D is a rectangle and we divide it into subrectangles $R_{i j}$ with dimensions Δu and Δv ．The surface S is divided into corresponding patches $S_{i j}$ ．
（2）We evaluate f at a point $P_{i j}^{*}$ in each patch，multiply by the area $\Delta S_{i j}$ ．
（3）We form the Riemann sum $\sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \Delta S_{i j}$ ．
（4）Taking the limit as the number of patches increasing and define the surface integral of f over the surface S（第一類曲面積分）as

$$
\iint_{S} f(x, y, z) \mathrm{d} S=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(P_{i j}^{*}\right) \Delta S_{i j}=\iint_{D} f(\mathbf{r}(u, v))\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \mathrm{d} A
$$和第一類曲線積分比較： $\int_{C} f(x, y, z) \mathrm{d} s=\int_{a}^{b} f(\mathbf{r}(t))\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t$ ．

Example 1 （page 1123）．Compute the surface integral $\iint_{S} x^{2} \mathrm{~d} S$ ，where S is the unit sphere $x^{2}+y^{2}+z^{2}=1$ ．

Solution．

Surface integrals have applications．For example，if a thin sheet has the shape of a surface S and density $\rho(x, y, z)$ ，then the total mass（質量）of the sheet is

$$
m=\iint_{S} \rho(x, y, z) \mathrm{d} S
$$

The center of mass（質心）of the sheet is

$$
\bar{x}=\frac{1}{m} \iint_{S} x \rho(x, y, z) \mathrm{d} S \quad \bar{y}=\frac{1}{m} \iint_{S} y \rho(x, y, z) \mathrm{d} S \quad \bar{z}=\frac{1}{m} \iint_{S} z \rho(x, y, z) \mathrm{d} S
$$

Graph，page 1124

Example 2 （page 1124）．Any surface S with equation $z=z(x, y)$ can be regarded as a parameter surface with parametric equations

$$
x=x \quad y=y \quad z=z(x, y)
$$

So we have

Similar formulas apply when we project S onto the $y z$－plane or $x z$－plane．
（a）If S is a surface with equation $y=y(x, z)$ and D is its projection onto the $x z$－plane，then

$$
\iint_{S} f(x, y, z) \mathrm{d} S=\iint_{D} f(x, y(x, z), z) \sqrt{1+\left(\frac{\partial y}{\partial x}\right)^{2}+\left(\frac{\partial y}{\partial z}\right)^{2}} \mathrm{~d} A
$$

（b）If S is a surface with equation $x=x(y, z)$ and D is its projection onto the $x z$－plane，then

$$
\iint_{S} f(x, y, z) \mathrm{d} S=\iint_{D} f(x(y, z), y, z) \sqrt{1+\left(\frac{\partial x}{\partial y}\right)^{2}+\left(\frac{\partial x}{\partial z}\right)^{2}} \mathrm{~d} A
$$

If S is a piecewise smooth surface，that is，a finite union of smooth surfaces $S_{1}, S_{2}, \ldots, S_{n}$ that intersect only along their boundaries，then the surface integral of f over S is defined by

$$
\iint_{S} f(x, y, z) \mathrm{d} S=\iint_{S_{1}} f(x, y, z) \mathrm{d} S+\cdots+\iint_{S_{n}} f(x, y, z) \mathrm{d} S
$$

Example 3 (page 1125). Evaluate $\iint_{S} z \mathrm{~d} S$, where S is the surface whose sides S_{1} are given by the cylinder $x^{2}+y^{2}=1$, whose bottom S_{2} is the disk $x^{2}+y^{2} \leq 1$ in the plane $z=0$, and whose top S_{3} is the part of the plane $z=1+x$ that lies above S_{2}.

Solution.

Oriented surfaces，page 1127

To define surface integrals of vector fields，we need to rule out nonorientable surfaces such as the Möbius strip．The Möbius strip is a＂one－sided surface．＂

Figure 1：Möbius strip．
From now on we consider only orientable（two－sided）surfaces．We start with a surface S that has a tangent plane at every point (x, y, z) on S except at any boundary point．There are two unit normal vectors \mathbf{n}_{1} and $\mathbf{n}_{2}=-\mathbf{n}_{1}$ at (x, y, z) ．

Definition 4 （page 1127）．If it is possible to choose a unit normal vector \mathbf{n} at every such point (x, y, z) so that \mathbf{n} varies continuously over S ，then S is called an oriented surface（可定向的曲面）and the given choice of \mathbf{n} provides S with an orientation（定向）．There are two possible orientations for any orientable surface．

Figure 2：Oriented surfaces．
（a）If S is a smooth orientable surface given by $\mathbf{r}(u, v)$ ，then the orientation of the unit normal vector is

$$
\mathbf{n}=\frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}
$$

and opposite orientation is given by $-\mathbf{n}$ ．
（b）For a surface S given as the graph of $z=z(x, y)$ ，we can get the unit normal vector

$$
\mathbf{n}=\frac{-z_{x} \mathbf{i}-z_{y} \mathbf{j}+\mathbf{k}}{\sqrt{1+z_{x}^{2}+z_{y}^{2}}}
$$

The unit normal vector gives the upward orientation of the surface．
（c）For a closed surface S（the boundary of a solid region E ），the convention is that the positive orientation is the normal vectors point outward from E ，and inward－pointing normals give the negative orientation．

Surface integrals of vector fields（第二類曲面積分），page 1128

Suppose that S is an orientated surface with unit normal vector \mathbf{n} ，and imagine a fluid with density $\rho(x, y, z)$ and velocity field $\mathbf{v}(x, y, z)$ flowing through S ．Then the rate of flow（mass per unit time）per unit area is $\rho \mathbf{v}$ ．If we divide S into small patches $S_{i j}$ ，then $S_{i j}$ is nearly planar and so we can approximate the mass of fluid per unit time crossing $S_{i j}$ in the direction of the normal \mathbf{n} by the quantity $(\rho \mathbf{v} \cdot \mathbf{n}) A\left(S_{i j}\right)$ ， where ρ, \mathbf{v} ，and \mathbf{n} are evaluated at some point on $S_{i j}$ ．By summing these quantities and taking the limit，we get the surface integral of the function $\rho \mathbf{v} \cdot \mathbf{n}$ over S ：

$$
\iint_{S} \rho \mathbf{v} \cdot \mathbf{n} \mathrm{~d} S=\iint_{S} \rho(x, y, z) \mathbf{v}(x, y, z) \cdot \mathbf{n}(x, y, z) \mathrm{d} S .
$$

If we write $\mathbf{F}=\rho \mathbf{v}$ ，then \mathbf{F} is a vector field on \mathbb{R}^{3} and the integral becomes $\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S$ ．Such surface integral is called the surface integral（第二類曲面積分），or flux integral（通量積分）of \mathbf{F} over S ．

Definition 5 （page 1129）．If \mathbf{F} is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n} ，then the surface integral of \mathbf{F} over S is

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S
$$

This integral is also called the flux（通量）of \mathbf{F} across S ．
The surface integral of a vector field over S is equal to the surface integral of its normal component over S ．
（a）If S is given by a vector function $\mathbf{r}(u, v)$ ，then we have

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S & =\iint_{D}\left(\mathbf{F}(\mathbf{r}(u, v)) \cdot \pm \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right|}\right)\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \mathrm{d} A \\
& =\iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot\left(\pm \mathbf{r}_{u} \times \mathbf{r}_{v}\right) \mathrm{d} A
\end{aligned}
$$

（b）If a surface S is given by a graph $z=z(x, y)$ ，then we can use vector function $\mathbf{r}(x, y)=x \mathbf{i}+y \mathbf{j}+g(x, y) \mathbf{k}$ and get

$$
\begin{aligned}
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{S} \mathbf{F} \cdot \mathbf{n} \mathrm{~d} S & =\iint_{D}(P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}) \cdot\left(\mp z_{x} \mathbf{i} \mp z_{y} \mathbf{j} \pm \mathbf{k}\right) \mathrm{d} A \\
& =\iint_{D}\left(\mp P g_{x} \mp Q g_{y} \pm R\right) \mathrm{d} A .
\end{aligned}
$$

（c）Is a surface S is a level surface $g(x, y, z)=0$ ，then $\mathbf{n}= \pm \frac{\nabla g}{|\nabla g|}$ ，and

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=\iint_{D} \mathbf{F} \cdot\left(\pm \frac{\nabla g}{|\nabla g|}\right) \frac{|\nabla g|}{|\nabla g \cdot \mathbf{p}|} \mathrm{d} A=\iint_{D} \mathbf{F} \cdot\left(\pm \frac{\nabla g}{|\nabla g \cdot \mathbf{p}|}\right) \mathrm{d} A
$$

where \mathbf{p} is the unit normal vector to the plane region．

Example 6 (page 1130). Find the flux of the vector field $\mathbf{F}(x, y, z)=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$ across the unit sphere $x^{2}+y^{2}+z^{2}=1$.

Solution.

Example 7 (page 1130). Evaluate $\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$, where $\mathbf{F}=y \mathbf{i}+x \mathbf{j}+z \mathbf{k}$ and S is the boundary of the solid region E enclosed by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.

Solution.

Appendix，page 1131

Definition 8 （page 1131）．If \mathbf{E} is an electric field，then the surface integral $\iint_{S} \mathbf{E} \cdot \mathrm{~d} \mathbf{S}$ is called the electric flux of E（電通量）through the surface S ．

One of the important laws of electrostatics is Gauss＇s Law（高斯定律），which says that the net charge enclosed by a closed surface S is

$$
Q=\varepsilon_{0} \iint_{S} \mathbf{E} \cdot \mathrm{~d} \mathbf{S},
$$

where ε_{0} is a constant（called the permittivity of free space 真空電容率）that depends on the units used．Therefore，if the vector field $\mathbf{F}=z \mathbf{i}+y \mathbf{j}+x \mathbf{k}$ represents an electric field，we can conclude that the charge enclosed by S is $Q=\frac{4}{3} \pi \varepsilon_{0}$ ．

Another application of surface integrals occurs in the study of heat flow．Suppose the temperature at a point (x, y, z) in a body is $u(x, y, z)$ ．Then the heat flow is defined as the vector field

$$
\mathbf{F}=-K \nabla u,
$$

where K is an experimentally determined constant called the conductivity of the substance．The rate of heat flow across the surface S in the body is then given by the surface integral

$$
\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}=-K \iint_{S} \nabla u \cdot \mathrm{~d} \mathbf{S} .
$$

Example 9 （page 1132）．The temperature u in a metal ball is proportional to the square of the distance from the center of the ball．Find the rate of heat flow across a sphere S of radius R with center at the center of the ball．

Solution．

