16.7 Surface Integrals, page 1122

The relationship between surface integrals and surface area is much the same as the relationship between line integrals and arc length.

Suppose f is a function of three variables whose domain includes a surface S. First, we will define the surface integral of f over S.

Surface integrals of functions (第一類曲面積分), page 1123

Suppose that a surface S has a vector equation

$$\mathbf{r}(u,v) = x(u,v)\,\mathbf{i} + y(u,v)\,\mathbf{j} + z(u,v)\,\mathbf{k}, \qquad (u,v) \in D.$$

- (1) We first assume that the parameter domain D is a rectangle and we divide it into subrectangles R_{ij} with dimensions Δu and Δv . The surface S is divided into corresponding patches S_{ij} .
- (2) We evaluate f at a point P_{ij}^* in each patch, multiply by the area ΔS_{ij} .
- (3) We form the Riemann sum $\sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^*) \Delta S_{ij}$.
- (4) Taking the limit as the number of patches increasing and define the surface integral of f over the surface S (第一類曲面積分) as

$$\iint_{S} f(x, y, z) \, \mathrm{d}S = \lim_{m, n \to \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f(P_{ij}^*) \Delta S_{ij} = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_u \times \mathbf{r}_v| \, \mathrm{d}A.$$

□ 和第一類曲線積分比較: $\int_C f(x, y, z) \, \mathrm{d}s = \int_a^b f(\mathbf{r}(t)) |\mathbf{r}'(t)| \, \mathrm{d}t.$

Example 1 (page 1123). Compute the surface integral $\iint_S x^2 dS$, where S is the unit sphere $x^2 + y^2 + z^2 = 1$.

Surface integrals have applications. For example, if a thin sheet has the shape of a surface S and density $\rho(x, y, z)$, then the total mass (質量) of the sheet is

$$m = \iint_{S} \rho(x, y, z) \, \mathrm{d}S$$

The center of mass (質心) of the sheet is

$$\bar{x} = \frac{1}{m} \iint_S x\rho(x, y, z) \,\mathrm{d}S \quad \bar{y} = \frac{1}{m} \iint_S y\rho(x, y, z) \,\mathrm{d}S \quad \bar{z} = \frac{1}{m} \iint_S z\rho(x, y, z) \,\mathrm{d}S.$$

Graph, page 1124

Example 2 (page 1124). Any surface S with equation z = z(x, y) can be regarded as a parameter surface with parametric equations

$$x = x$$
 $y = y$ $z = z(x, y)$.

So we have

Similar formulas apply when we project S onto the yz-plane or xz-plane.

(a) If S is a surface with equation y = y(x, z) and D is its projection onto the xz-plane, then

$$\iint_{S} f(x, y, z) \, \mathrm{d}S = \iint_{D} f(x, y(x, z), z) \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^{2} + \left(\frac{\partial y}{\partial z}\right)^{2}} \, \mathrm{d}A.$$

(b) If S is a surface with equation x = x(y, z) and D is its projection onto the xz-plane, then

$$\iint_{S} f(x, y, z) \, \mathrm{d}S = \iint_{D} f(x(y, z), y, z) \sqrt{1 + \left(\frac{\partial x}{\partial y}\right)^{2} + \left(\frac{\partial x}{\partial z}\right)^{2}} \, \mathrm{d}A.$$

If S is a piecewise smooth surface, that is, a finite union of smooth surfaces S_1, S_2, \ldots, S_n that intersect only along their boundaries, then the surface integral of f over S is defined by

$$\iint_{S} f(x, y, z) \, \mathrm{d}S = \iint_{S_1} f(x, y, z) \, \mathrm{d}S + \dots + \iint_{S_n} f(x, y, z) \, \mathrm{d}S.$$

§16.7-2

Example 3 (page 1125). Evaluate $\iint_S z \, dS$, where S is the surface whose sides S_1 are given by the cylinder $x^2 + y^2 = 1$, whose bottom S_2 is the disk $x^2 + y^2 \leq 1$ in the plane z = 0, and whose top S_3 is the part of the plane z = 1 + x that lies above S_2 .

Oriented surfaces, page 1127

To define surface integrals of vector fields, we need to rule out nonorientable surfaces such as the Möbius strip. The Möbius strip is a "one-sided surface."

Figure 1: Möbius strip.

From now on we consider only orientable (two-sided) surfaces. We start with a surface S that has a tangent plane at every point (x, y, z) on S except at any boundary point. There are two unit normal vectors \mathbf{n}_1 and $\mathbf{n}_2 = -\mathbf{n}_1$ at (x, y, z).

Definition 4 (page 1127). If it is possible to choose a unit normal vector **n** at every such point (x, y, z) so that **n** varies continuously over *S*, then *S* is called an *oriented surface* (可定向的曲面) and the given choice of **n** provides *S* with an *orientation* (定向). There are two possible orientations for any orientable surface.

Figure 2: Oriented surfaces.

(a) If S is a smooth orientable surface given by $\mathbf{r}(u, v)$, then the orientation of the unit normal vector is

$$\mathbf{n} = rac{\mathbf{r}_u imes \mathbf{r}_v}{|\mathbf{r}_u imes \mathbf{r}_v|}.$$

and opposite orientation is given by $-\mathbf{n}$.

(b) For a surface S given as the graph of z = z(x, y), we can get the unit normal vector

$$\mathbf{n} = \frac{-z_x \,\mathbf{i} - z_y \,\mathbf{j} + \mathbf{k}}{\sqrt{1 + z_x^2 + z_y^2}}$$

The unit normal vector gives the *upward orientation* of the surface.

(c) For a closed surface S (the boundary of a solid region E), the convention is that the positive orientation is the normal vectors point outward from E, and inward-pointing normals give the negative orientation.

Surface integrals of vector fields (第二類曲面積分), page 1128

Suppose that S is an orientated surface with unit normal vector **n**, and imagine a fluid with density $\rho(x, y, z)$ and velocity field $\mathbf{v}(x, y, z)$ flowing through S. Then the rate of flow (mass per unit time) per unit area is $\rho \mathbf{v}$. If we divide S into small patches S_{ij} , then S_{ij} is nearly planar and so we can approximate the mass of fluid per unit time crossing S_{ij} in the direction of the normal **n** by the quantity $(\rho \mathbf{v} \cdot \mathbf{n})A(S_{ij})$, where ρ, \mathbf{v} , and **n** are evaluated at some point on S_{ij} . By summing these quantities and taking the limit, we get the surface integral of the function $\rho \mathbf{v} \cdot \mathbf{n}$ over S:

$$\iint_{S} \rho \mathbf{v} \cdot \mathbf{n} \, \mathrm{d}S = \iint_{S} \rho(x, y, z) \mathbf{v}(x, y, z) \cdot \mathbf{n}(x, y, z) \, \mathrm{d}S.$$

If we write $\mathbf{F} = \rho \mathbf{v}$, then \mathbf{F} is a vector field on \mathbb{R}^3 and the integral becomes $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$. Such surface integral is called the *surface integral* (第二類曲面積分), or *flux integral* (通量積分) of \mathbf{F} over S.

Definition 5 (page 1129). If \mathbf{F} is a continuous vector field defined on an oriented surface S with unit normal vector \mathbf{n} , then the surface integral of \mathbf{F} over S is

$$\iint_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \,\mathrm{d}S.$$

This integral is also called the flux ($\mathbb{i}\mathbb{E}$) of \mathbf{F} across S.

The surface integral of a vector field over S is equal to the surface integral of its normal component over S.

(a) If S is given by a vector function $\mathbf{r}(u, v)$, then we have

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{D} \left(\mathbf{F}(\mathbf{r}(u, v)) \cdot \pm \frac{\mathbf{r}_{u} \times \mathbf{r}_{v}}{|\mathbf{r}_{u} \times \mathbf{r}_{v}|} \right) |\mathbf{r}_{u} \times \mathbf{r}_{v}| \, dA$$
$$= \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\pm \mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA.$$

(b) If a surface S is given by a graph z = z(x, y), then we can use vector function $\mathbf{r}(x, y) = x \mathbf{i} + y \mathbf{j} + g(x, y) \mathbf{k}$ and get

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{D} (P \, \mathbf{i} + Q \, \mathbf{j} + R \, \mathbf{k}) \cdot (\mp z_{x} \, \mathbf{i} \mp z_{y} \, \mathbf{j} \pm \mathbf{k}) \, dA$$
$$= \iint_{D} (\mp P g_{x} \mp Q g_{y} \pm R) \, dA.$$

(c) Is a surface S is a level surface g(x, y, z) = 0, then $\mathbf{n} = \pm \frac{\nabla g}{|\nabla g|}$, and

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F} \cdot \left(\pm \frac{\nabla g}{|\nabla g|} \right) \frac{|\nabla g|}{|\nabla g \cdot \mathbf{p}|} dA = \iint_{D} \mathbf{F} \cdot \left(\pm \frac{\nabla g}{|\nabla g \cdot \mathbf{p}|} \right) dA,$$

where \mathbf{p} is the unit normal vector to the plane region.

Example 6 (page 1130). Find the flux of the vector field $\mathbf{F}(x, y, z) = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ across the unit sphere $x^2 + y^2 + z^2 = 1$.

Solution.

Example 7 (page 1130). Evaluate $\iint_S \mathbf{F} \cdot d\mathbf{S}$, where $\mathbf{F} = y \mathbf{i} + x \mathbf{j} + z \mathbf{k}$ and S is the boundary of the solid region E enclosed by the paraboloid $z = 1 - x^2 - y^2$ and the plane z = 0.

Appendix, page 1131

Definition 8 (page 1131). If **E** is an electric field, then the surface integral $\iint_S \mathbf{E} \cdot d\mathbf{S}$ is called the *electric flux of E* (電通量) through the surface *S*.

One of the important laws of electrostatics is Gauss's Law (高斯定律), which says that the net charge enclosed by a closed surface S is

$$Q = \varepsilon_0 \iint_S \mathbf{E} \cdot \mathrm{d}\mathbf{S},$$

where ε_0 is a constant (called the permittivity of free space 真空電容率) that depends on the units used. Therefore, if the vector field $\mathbf{F} = z \mathbf{i} + y \mathbf{j} + x \mathbf{k}$ represents an electric field, we can conclude that the charge enclosed by S is $Q = \frac{4}{3}\pi\varepsilon_0$.

Another application of surface integrals occurs in the study of heat flow. Suppose the temperature at a point (x, y, z) in a body is u(x, y, z). Then the *heat flow* is defined as the vector field

$$\mathbf{F} = -K\nabla u,$$

where K is an experimentally determined constant called the *conductivity* of the substance. The rate of heat flow across the surface S in the body is then given by the surface integral

$$\iint_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S} = -K \iint_{S} \nabla u \cdot \mathrm{d}\mathbf{S}.$$

Example 9 (page 1132). The temperature u in a metal ball is proportional to the square of the distance from the center of the ball. Find the rate of heat flow across a sphere S of radius R with center at the center of the ball.