16．6 Parametric Surfaces and Their Areas， page 1111

Here we use vector functions to describe more general surfaces，called parametric surfaces，and compute their areas．

Parametric surfaces（參數曲面），page 1111

We can describe a surface by a vector function $\mathbf{r}(u, v)$ of two parameters u and v ：

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k},
$$

which is a vector－valued function defined on a region D in the $u v$－plane．So $x(u, v)$ ， $y(u, v)$ ，and $z(u, v)$ ，called the component functions（分量函數）of $\mathbf{r}(u, v)$ ．

Definition 1 （page 1111）．The set of all points (x, y, z) in \mathbb{R}^{3} such that

$$
\begin{equation*}
x=x(u, v), \quad y=y(u, v), \quad z=z(u, v) \tag{1}
\end{equation*}
$$

where (u, v) varies throughout D ，is called parametric surfaces S（参數曲面）．Equa－ tions（1）are called parametric equations of S（參數方程）．

Figure 1：Parametric surface．

Example 2 （page 1113）．Find a vector function of the following surfaces．
（a）Plane passes through P_{0} with position vector \mathbf{r}_{0} and contains vectors \mathbf{a} and \mathbf{b} ．
（b）Sphere $x^{2}+y^{2}+z^{2}=r_{0}^{2}$ ．
（c）Cylinder $x^{2}+z^{2}=r_{0}^{2}$ ．

Solution．

Definition 3 （page 1112）．If we keep u constant by putting $u=u_{0}$ ，we get a curve C_{v} given by $\mathbf{r}\left(u_{0}, v\right)$ ．If we keep v constant by putting $v=v_{0}$ ，we get a curve C_{u} given by $\mathbf{r}\left(u, v_{0}\right)$ ．These curves are called grid curves（網格曲線）．

Figure 2：Grid curves．

Example 4 （page 1114）．Find a vector function of the following surfaces．（a） Elliptic paraboloid $z=x^{2}+2 y^{2}$ ．（b）The top half of the cone $z=2 \sqrt{x^{2}+y^{2}}$ ．

Solution．

Surfaces of revolution（旋轉曲面），page 1115

Consider the surface of revolution S obtained by rotating the curve $y=f(x), a \leq$ $x \leq b$ ，about the x－axis，where $f(x) \geq 0$ ．Let θ be the angle of rotation．If (x, y, z) is a point on S ，then

$$
\begin{equation*}
x=x, \quad y=f(x) \cos \theta, \quad z=f(x) \sin \theta . \tag{2}
\end{equation*}
$$

Therefore we take x and θ as parameters and regard equation（2）as parameter equations of S ．The parameter domain is given by $a \leq x \leq b, 0 \leq \theta \leq 2 \pi$ ．

Figure 3：Left：Surface of revolution；Right：Example 5.

Example 5 （page 1115）．Find parametric equations for the surface generated by rotating the curve $y=\sin x, 0 \leq x \leq 2 \pi$ ，about x－axis．

Solution．

Tangent planes，page 1115

We now find the tangent plane to a parametric surface S traced out by

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}
$$

at a point P_{0} with position vector $\mathbf{r}\left(u_{0}, v_{0}\right)$ ．
If we keep v constant by putting $v=v_{0}$ ，then $\mathbf{r}\left(u, v_{0}\right)$ becomes a vector function of the single parameter u and defines a grid curve C_{u} lying on S ．The tangent vector to C_{u} at P_{0} is obtained by taking the partial derivative of \mathbf{r} with respect to u ：

$$
\mathbf{r}_{u}\left(u_{0}, v_{0}\right)=\frac{\partial x}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{i}+\frac{\partial y}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{j}+\frac{\partial z}{\partial u}\left(u_{0}, v_{0}\right) \mathbf{k} .
$$

Figure 4：Tangent plane is spanned by \mathbf{r}_{u} and \mathbf{r}_{v} ．

If we keep u constant by putting $u=u_{0}$ ，then $\mathbf{r}\left(u_{0}, v\right)$ becomes a vector function of the single parameter v and defines a grid curve C_{v} lying on S ．The tangent vector to C_{v} at P_{0} is obtained by taking the partial derivative of \mathbf{r} with respect to v ：

$$
\mathbf{r}_{v}\left(u_{0}, v_{0}\right)=\frac{\partial x}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{i}+\frac{\partial y}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{j}+\frac{\partial z}{\partial v}\left(u_{0}, v_{0}\right) \mathbf{k}
$$

If $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is not $\mathbf{0}$ ，then the surface S is called smooth（光滑曲面），and it has no corners．For a smooth surface，the tangent plane（切平面）is the plane that contains the tangent vectors \mathbf{r}_{u} and \mathbf{r}_{v} ，and the vector $\mathbf{r}_{u} \times \mathbf{r}_{v}$ is a normal vector to the tangent plane．

Surface area，page 1116

Definition 6 （page 1117）．If a smooth parametric surface S is given by

$$
\mathbf{r}(u, v)=x(u, v) \mathbf{i}+y(u, v) \mathbf{j}+z(u, v) \mathbf{k}, \quad(u, v) \in D
$$

and S is covered just once as (u, v) ranges throughout the parametric domain D ， then the surface area of S（曲面面積）is

$$
A(S)=\iint_{D}\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \mathrm{d} A
$$

where $\mathbf{r}_{u}=\frac{\partial x}{\partial u} \mathbf{i}+\frac{\partial y}{\partial u} \mathbf{j}+\frac{\partial z}{\partial u} \mathbf{k}$ and $\mathbf{r}_{v}=\frac{\partial x}{\partial v} \mathbf{i}+\frac{\partial y}{\partial v} \mathbf{j}+\frac{\partial z}{\partial v} \mathbf{k}$ ．

Example 7 (page 1117). Find the surface area of a sphere of radius R.

Solution.

Surface area of the graph of a function, page 1118

Example 8 (page 1118). If a surface S is a graph of $z=f(x, y)$, then the parameter equation of S is

$$
\mathbf{r}(x, y)=
$$

We compute

Example 9 (page 1119). For surfaces of revolution, prove that the surface area formula is consistent with the surface area formula from single-variable calculus. Solution.

