## 16．4 Green＇s Theorem，page 1096

Green＇s Theorem gives the relationship between a line integral around a simple closed curve $C$ and a double integral over the plane region $D$ bounded by $C$ ．

Definition 1 （page 1096）．We say a simple closed curve $C$ is positive orientation （正的定向）if the curve is traverses counterclockwise．

If $C$ is given by the vector function $\mathbf{r}(t), a \leq t \leq b$ ，then the region $D$ is always on the left at the point $\mathbf{r}(t)$ traverses $C$ ．



Figure 1：Positive orientation（left）and negative orientation（right）．

Green＇s Theorem（page 1096）．Let $C$ be a positive oriented，piecewise smooth， simple closed curve in the plane and let $D$ be the region bounded by C．If $P(x, y)$ and $Q(x, y)$ have continuous partial derivatives on an open region that contains $D$ ， then

$$
\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A .
$$

Remark 2．Sometimes we use the following notations

$$
\oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y, \quad \oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y, \quad \text { or } \quad \int_{\partial D} P \mathrm{~d} x+Q \mathrm{~d} y
$$

to indicate that the line integral is calculated in the positive orientation．
Example 3 （page 1098）．Evaluate $\int_{C} x^{4} \mathrm{~d} x+x y \mathrm{~d} y$ ，where $C$ is the triangular curve consisting of the line segments from $(0,0)$ to $(1,0)$ ，form $(1,0)$ to $(0,1)$ ，and from $(0,1)$ to $(0,0)$ ．

## Solution．

Example 4 (page 1098). Evaluate $\oint_{C}\left(3 y-\mathrm{e}^{\sin x}\right) \mathrm{d} x+\left(7 x+\sqrt{y^{4}+1}\right) \mathrm{d} y$, where $C$ is the circle $x^{2}+y^{2}=9$.

## Solution.

Example 5 (page 1098). If $P(x, y)=Q(x, y)=0$ on a simple closed curve $C$, and $P(x, y), Q(x, y)$ satisfy the hypotheses of Green's Theorem, then
no matter what values $P$ and $Q$ assume in the region $D$.
Example 6 (page 1099). If we take $(P, Q)=(0, x),(P, Q)=(-y, 0)$, and $(P, Q)=$ $\left(-\frac{1}{2} y, \frac{1}{2} x\right)$, then Green's Theorem gives

Example 7 (page 1102).
(a) If $C$ is the line segment connecting the point $\left(x_{1}, y_{1}\right)$ to the point $\left(x_{2}, y_{2}\right)$, then

$$
\int_{C}-\frac{1}{2} y \mathrm{~d} x+\frac{1}{2} x \mathrm{~d} y=\frac{1}{2}\left(x_{1} y_{2}-x_{2} y_{1}\right) .
$$

(b) If the vertices of a polygon, in counterclockwise order, are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$, $\left(x_{n}, y_{n}\right)$, then the area of the polygon is

$$
\begin{aligned}
A=\frac{1}{2} & \left(\left(x_{1} y_{2}-x_{2} y_{1}\right)+\left(x_{2} y_{3}-x_{3} y_{2}\right)+\cdots\right. \\
& \left.\quad+\left(x_{n-1} y_{n}-y_{n-1} x_{n}\right)+\left(x_{n} y_{1}-y_{n} x_{1}\right)\right)
\end{aligned}
$$

## Extended Versions of Green's Theorem, page 1099

Green's Theorem can be extended to apply to regions with holes (genus), that is, regions that are not simply connected.


Figure 2: Region $D$ is not simply connected.
See Figure 2 (a). Observe that the boundary $C$ of the region $D$ consists of two simple closed curves $C_{1}$ and $C_{2}$. We assume that these boundary curves are oriented so that the region $D$ is always on the left as the curve $C$ is traversed. Thus the positive direction is counterclockwise for the outer curve $C_{1}$ but clockwise for the inner curve $C_{2}$.

If we divide $D$ into two region $D^{\prime}$ and $D^{\prime \prime}$ by means of the lines shown in Figure 2 (b), then we applying Green's Theorem to each of $D^{\prime}$ and $D^{\prime \prime}$ to get

$$
\begin{aligned}
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A & =\iint_{D^{\prime}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A+\iint_{D^{\prime \prime}}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A \\
& =\int_{\partial D^{\prime}} P \mathrm{~d} x+Q \mathrm{~d} y+\int_{\partial D^{\prime \prime}} P \mathrm{~d} x+Q \mathrm{~d} y
\end{aligned}
$$

Since the line integrals along the common boundary lines are in opposite directions, they cancel and we get

$$
\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A=\int_{C_{1}} P \mathrm{~d} x+Q \mathrm{~d} y+\int_{C_{2}} P \mathrm{~d} x+Q \mathrm{~d} y=\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y .
$$

Example 8 (page 1100). Let $\mathbf{F}(x, y)=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}$.
(a) Show that $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$ for every simple closed curve that does not encloses the origin.
(b) Show that $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=2 \pi$ for every positively oriented simple closed path that encloses the origin.

## Solution.

## Appendix, page 1097

Proof of Green's Theorem in which $D$ is a simple region. It suffices to show that

$$
\int_{C} P(x, y) \mathrm{d} x=-\iint_{D} \frac{\partial P}{\partial y} \mathrm{~d} A \quad \text { and } \quad \int_{C} Q(x, y) \mathrm{d} y=\iint_{D} \frac{\partial Q}{\partial x} \mathrm{~d} A .
$$



Figure 3: Simple Region $D$.
We express $D$ as a type I region $D=\left\{(x, y) \mid a \leq x \leq b, y_{1}(x) \leq y \leq y_{2}(x)\right\}$, where $y_{1}(x)$ and $y_{2}(x)$ are continuous functions. By the Fundamental Theorem of Calculus, we have

$$
-\iint_{D} \frac{\partial P}{\partial y} \mathrm{~d} A=-\int_{a}^{b} \int_{y_{1}(x)}^{y_{2}(x)} \frac{\partial P}{\partial y}(x, y) \mathrm{d} y \mathrm{~d} x=-\int_{a}^{b}\left(P\left(x, y_{2}(x)\right)-P\left(x, y_{1}(x)\right)\right) \mathrm{d} x .
$$

On the other hand, we know $C=C_{1} \cup C_{2} \cup C_{3} \cup C_{4}$. On $C_{1}$, we write the vector function $\mathbf{r}_{1}(t)=t \mathbf{i}+y_{1}(t) \mathbf{j}$, and $t$ from $a$ to $b$. So

$$
\int_{C_{1}} P(x, y) \mathrm{d} x=\int_{a}^{b} P\left(x, y_{1}(x)\right) \mathrm{d} x .
$$

On $C_{3}$, we use the vector function $\mathbf{r}_{3}(t)=t \mathbf{i}+y_{2}(t) \mathbf{j}, t$ from $b$ to $a$. Therefore

$$
\int_{C_{3}} P(x, y) \mathrm{d} x=\int_{b}^{a} P\left(t, y_{2}(t)\right) \mathrm{d} t=-\int_{a}^{b} P\left(x, y_{2}(x)\right) \mathrm{d} x .
$$

On $C_{2}$ or $C_{4}, x$ is constant, so $\mathrm{d} x=0$ and hence

$$
\int_{C_{2}} P(x, y) \mathrm{d} x=0=\int_{C_{4}} P(x, y) \mathrm{d} x .
$$

Hence

$$
\begin{aligned}
\int_{C} P(x, y) \mathrm{d} x & =\int_{C_{1}} P(x, y) \mathrm{d} x+\int_{C_{2}} P(x, y) \mathrm{d} x+\int_{C_{3}} P(x, y) \mathrm{d} x+\int_{C_{4}} P(x, y) \mathrm{d} x \\
& =\int_{a}^{b} P\left(x, y_{1}(x)\right) \mathrm{d} x-\int_{a}^{b} P\left(x, y_{2}(x)\right) \mathrm{d} x=-\iint_{D} \frac{\partial P}{\partial y} \mathrm{~d} A .
\end{aligned}
$$

Equality $\int_{C} Q(x, y) \mathrm{d} y=\iint_{D} \frac{\partial Q}{\partial x} \mathrm{~d} A$ can be proved similarly.

Proof of Theorem 10 in section 16.3. If $C$ is any simple closed path in $D$ and $R$ is the region that encloses, then Green's Theorem gives

$$
\oint_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\oint_{C} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A=\iint_{R} 0 \mathrm{~d} A=0 .
$$

A curve that is not simple crossed itself at one or more points and can be broken up into a number of simple curve. We have shown that the line integral of $\mathbf{F}$ around these simple curves are all 0 and, adding these integrals, we see that $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$ for any closed curve $C$. Therefore $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ is independent of path in $D$, and $\mathbf{F}$ is a conservative vector field.

Remark 9. In differential geometry, we define the "wedge product" or "exterior operator" on vectors or differential forms. Given two differential forms $\mathrm{d} x, \mathrm{~d} y$, their wedge product $\mathrm{d} x \wedge \mathrm{~d} y$ means the positive oriented area element, so we have

$$
\mathrm{d} A=\mathrm{d} x \wedge \mathrm{~d} y=-\mathrm{d} y \wedge \mathrm{~d} x, \quad \text { and } \quad \mathrm{d} x \wedge \mathrm{~d} x=0, \quad \text { and } \quad \mathrm{d}(\mathrm{~d} x)=0
$$

Green's Theorem can be regarded as the relationship between the integral, differential forms, and wedge product:

$$
\begin{aligned}
& \int_{C} P \mathrm{~d} x+Q \mathrm{~d} y=\iint_{D} \mathrm{~d}(P \mathrm{~d} x+Q \mathrm{~d} y) \\
= & \iint_{D}\left(\frac{\partial P}{\partial x} \mathrm{~d} x+\frac{\partial P}{\partial y} \mathrm{~d} y\right) \wedge \mathrm{d} x+P \mathrm{~d}(\mathrm{~d} x)+\left(\frac{\partial Q}{\partial x} \mathrm{~d} x+\frac{\partial Q}{\partial y} \mathrm{~d} y\right) \wedge \mathrm{d} y+Q \mathrm{~d}(\mathrm{~d} y) \\
= & \iint_{D} \frac{\partial P}{\partial y} \mathrm{~d} y \wedge \mathrm{~d} x+\int_{D} \frac{\partial Q}{\partial x} \mathrm{~d} x \wedge \mathrm{~d} y=\iint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} A .
\end{aligned}
$$

