
16.4 Green’s Theorem, page 1096

Green’s Theorem gives the relationship between a line integral around a simple

closed curve C and a double integral over the plane region D bounded by C.

Definition 1 (page 1096). We say a simple closed curve C is positive orientation

(正的定向) if the curve is traverses counterclockwise.

If C is given by the vector function r(t), a ≤ t ≤ b, then the region D is always

on the left at the point r(t) traverses C.
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Figure 1: Positive orientation (left) and negative orientation (right).

Green’s Theorem (page 1096). Let C be a positive oriented, piecewise smooth,

simple closed curve in the plane and let D be the region bounded by C. If P (x, y)

and Q(x, y) have continuous partial derivatives on an open region that contains D,

then �
C

P dx+Q dy =

�
D

(

∂Q

∂x
−

∂P

∂y

)

dA.

Remark 2. Sometimes we use the following notations�
C

P dx+Q dy,

�
C

P dx+Q dy, or

�
∂D

P dx+Q dy

to indicate that the line integral is calculated in the positive orientation.

Example 3 (page 1098). Evaluate
�
C
x4 dx+xy dy, where C is the triangular curve

consisting of the line segments from (0, 0) to (1, 0), form (1, 0) to (0, 1), and from

(0, 1) to (0, 0).

Solution.

§16.4-1



Example 4 (page 1098). Evaluate
�
C
(3y − esinx) dx+ (7x+

√

y4 + 1) dy, where C

is the circle x2 + y2 = 9.

Solution.

Example 5 (page 1098). If P (x, y) = Q(x, y) = 0 on a simple closed curve C, and

P (x, y), Q(x, y) satisfy the hypotheses of Green’s Theorem, then

no matter what values P and Q assume in the region D.

Example 6 (page 1099). If we take (P,Q) = (0, x), (P,Q) = (−y, 0), and (P,Q) =

(−1
2
y, 1

2
x), then Green’s Theorem gives

Example 7 (page 1102).

(a) If C is the line segment connecting the point (x1, y1) to the point (x2, y2), then�
C

−
1

2
y dx+

1

2
x dy =

1

2
(x1y2 − x2y1).
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(b) If the vertices of a polygon, in counterclockwise order, are (x1, y1), (x2, y2), . . .,

(xn, yn), then the area of the polygon is

A =
1

2
((x1y2 − x2y1) + (x2y3 − x3y2) + · · ·

+ (xn−1yn − yn−1xn) + (xny1 − ynx1)).

Extended Versions of Green’s Theorem, page 1099

Green’s Theorem can be extended to apply to regions with holes (genus), that is,

regions that are not simply connected.
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Figure 2: Region D is not simply connected.

See Figure 2 (a). Observe that the boundary C of the region D consists of two

simple closed curves C1 and C2. We assume that these boundary curves are oriented

so that the region D is always on the left as the curve C is traversed. Thus the

positive direction is counterclockwise for the outer curve C1 but clockwise for the

inner curve C2.

If we divide D into two region D′ and D′′ by means of the lines shown in Figure 2

(b), then we applying Green’s Theorem to each of D′ and D′′ to get�
D

(

∂Q

∂x
−

∂P

∂y

)

dA =

�
D′

(

∂Q

∂x
−

∂P

∂y

)

dA +

�
D′′

(

∂Q

∂x
−

∂P

∂y

)

dA

=

�
∂D′

P dx+Q dy +

�
∂D′′

P dx+Q dy.

Since the line integrals along the common boundary lines are in opposite directions,

they cancel and we get�
D

(

∂Q

∂x
−

∂P

∂y

)

dA =

�
C1

P dx+Q dy +

�
C2

P dx+Q dy =

�
C

P dx+Q dy.
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Example 8 (page 1100). Let F(x, y) = −y

x2+y2
i + x

x2+y2
j.

(a) Show that
�
C
F · dr = 0 for every simple closed curve that does not encloses

the origin.

(b) Show that
�
C
F · dr = 2π for every positively oriented simple closed path that

encloses the origin.

Solution.
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Appendix, page 1097

Proof of Green’s Theorem in which D is a simple region. It suffices to show that�
C

P (x, y) dx = −

�
D

∂P

∂y
dA and

�
C

Q(x, y) dy =

�
D

∂Q

∂x
dA.
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Figure 3: Simple Region D.

We express D as a type I region D = {(x, y)| a ≤ x ≤ b, y1(x) ≤ y ≤ y2(x)},

where y1(x) and y2(x) are continuous functions. By the Fundamental Theorem of

Calculus, we have

−

�
D

∂P

∂y
dA = −

� b

a

� y2(x)

y1(x)

∂P

∂y
(x, y) dy dx = −

� b

a

(P (x, y2(x))− P (x, y1(x))) dx.

On the other hand, we know C = C1 ∪C2 ∪C3 ∪C4. On C1, we write the vector

function r1(t) = t i+ y1(t) j, and t from a to b. So�
C1

P (x, y) dx =

� b

a

P (x, y1(x)) dx.

On C3, we use the vector function r3(t) = t i+ y2(t) j, t from b to a. Therefore�
C3

P (x, y) dx =

� a

b

P (t, y2(t)) dt = −

� b

a

P (x, y2(x)) dx.

On C2 or C4, x is constant, so dx = 0 and hence�
C2

P (x, y) dx = 0 =

�
C4

P (x, y) dx.

Hence�
C

P (x, y) dx =

�
C1

P (x, y) dx+

�
C2

P (x, y) dx+

�
C3

P (x, y) dx+

�
C4

P (x, y) dx

=

� b

a

P (x, y1(x)) dx−

� b

a

P (x, y2(x)) dx = −

�
D

∂P

∂y
dA.

Equality

�
C

Q(x, y) dy =

�
D

∂Q

∂x
dA can be proved similarly.
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Proof of Theorem 10 in section 16.3. If C is any simple closed path in D and R is

the region that encloses, then Green’s Theorem gives�
C

F · dr =

�
C

P dx+Q dy =

�
R

(

∂Q

∂x
−

∂P

∂y

)

dA =

�
R

0 dA = 0.

A curve that is not simple crossed itself at one or more points and can be broken up

into a number of simple curve. We have shown that the line integral of F around

these simple curves are all 0 and, adding these integrals, we see that
�
C
F · dr = 0

for any closed curve C. Therefore
�
C
F · dr is independent of path in D, and F is a

conservative vector field.

Remark 9. In differential geometry, we define the “wedge product” or “exterior

operator” on vectors or differential forms. Given two differential forms dx, dy, their

wedge product dx ∧ dy means the positive oriented area element, so we have

dA = dx ∧ dy = −dy ∧ dx, and dx ∧ dx = 0, and d(dx) = 0.

Green’s Theorem can be regarded as the relationship between the integral, differen-

tial forms, and wedge product:�
C

P dx+Q dy =

�
D

d(P dx+Q dy)

=

�
D

(

∂P

∂x
dx+

∂P

∂y
dy

)

∧ dx+ P d(dx) +

(

∂Q

∂x
dx+

∂Q

∂y
dy

)

∧ dy +Q d(dy)

=

�
D

∂P

∂y
dy ∧ dx+

�
D

∂Q

∂x
dx ∧ dy =

�
D

(

∂Q

∂x
−

∂P

∂y

)

dA.
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