16．3 The Fundamental Theorem for Line Inte－ grals，page 1087

Recall that Part 2 of the Fundamental Theorem of Calculus is

$$
\begin{equation*}
\int_{a}^{b} F^{\prime}(x) \mathrm{d} x=F(b)-F(a) \tag{1}
\end{equation*}
$$

where $F^{\prime}(x)$ is continuous on $[a, b]$ ．We also called equation（1）the Net Change Theorem：The integral of a rate of change is the net change．

Here we will introduce the Fundamental Theorem for line integrals，where we think of the gradient vector ∇f of a function f as a sort of derivative of f ．

Theorem 1 （page 1087）．Let C be a smooth curve given by the vector function $\mathbf{r}(t), a \leq t \leq b$ ．Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C ．Then

$$
\int_{C} \nabla f \cdot \mathrm{~d} \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a)) .
$$

\square 若向量場來自於函數的梯度（保守向量場），則線積分的值爲兩端點函數值的差。
\square 第二類曲線積分的路徑有方向性，即 $\int_{C} \nabla f \cdot \mathrm{~d} \mathbf{r}=-\int_{-C} \nabla f \cdot \mathrm{~d} \mathbf{r}$ 。

Figure 1：The fundamental theorem for line integrals．

Proof．By the Chain Rule and the Fundamental Theorem of Calculus，we have

$$
\begin{aligned}
\int_{C} \nabla f \cdot \mathrm{~d} \mathbf{r} & =\int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t=\int_{a}^{b}\left(\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}+\frac{\partial f}{\partial z} \frac{\mathrm{~d} z}{\mathrm{~d} t}\right) \mathrm{d} t \\
& =\int_{a}^{b} \frac{\mathrm{~d}}{\mathrm{~d} t} f(\mathbf{r}(t)) \mathrm{d} t=f(\mathbf{r}(b))-f(\mathbf{r}(a)) .
\end{aligned}
$$

Theorem 1 is also true for piecewise smooth curves．This can be seen by subdi－ viding C into a finite number of smooth curves and adding the resulting integrals．

Example 2 （page 1088）．Find the work done by the gravitational field $\mathbf{F}(\mathbf{x})=$ $-\frac{G M m}{|\mathbf{x}|^{3}} \mathbf{x}$ in moving a particle with mass m from the point $(3,4,12)$ to the point $(2,2,0)$ along a piecewise smooth curve C ．

Solution．

Independence of Path，page 1088

Suppose that C_{1} and C_{2} are two piecewise smooth curves，which are also called paths （路徑）with have the same initial point A and terminal point B ．

Definition 3 （page 1088）．Suppose that \mathbf{F} is a continuous vector field with domain D ．We say the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ is independent of path（積分和路徑選取無關）if

$$
\int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}
$$

for any two path C_{1} and C_{2} in D with the same initial and terminal points．
－In general vector field $\mathbf{F}, \int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} \neq \int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ ．（See 16．2，Example 5）．
－For conservative vector field $\mathbf{F}=\nabla f$ ，the Fundamental Theorem for line inte－ grals tells us $\int_{C_{1}} \nabla f \cdot \mathrm{~d} \mathbf{r}=\int_{C_{2}} \nabla f \cdot \mathrm{~d} \mathbf{r}=f(\mathbf{r}(b))-f(\mathbf{r}(a))$ ．
－The following discussion will say that the only vector fields that are indepen－ dent of path are conservative vector fields．

保守向量場 \Rightarrow 第二類曲線積分與路徑選取無關。
Definition 4 （page 1089）．A curve is called closed（封閉曲線）if its terminal point coincides with its initial point，that is， $\mathbf{r}(b)=\mathbf{r}(a)$ ．

Figure 2：Closed curve（left）and non－closed curve（right）．

Theorem 5 （page 1089）．The line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ is independent of path in D if and only if $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0$ for every closed path C in D ．

Proof．(\Rightarrow) We choose any two points A and B on C and regard C as being composed of the path C_{1} from A to B followed by the path C_{2} from B to A ．Then

$$
\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C_{1} \cup C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}-\int_{-C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=0 .
$$

(\Leftarrow) For any paths C_{1} and C_{2} from A to B in D ，we define C to be the curve consisting of C_{1} followed by $-C_{2}$ ．Then we get

$$
0=\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}+\int_{-C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}-\int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r},
$$

and hence $\int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ ．
第二類曲線積分與路徑無關 \Leftrightarrow 封閉曲線上的第二類曲線積分爲零。
\square 在保守向量場（例如重力場）將一物沿封閉曲線做功爲零。
Definition 6 （page 1089）．
（a）A domain D is open（開集合）if for every point P in D ，there is a disk with center P that lies entirely in D ．（ D doesn＇t contain any of its boundary points．）
（b）A domain D is path connected（路徑連通）if any two points in D can be joined by a path that lies in D ．

Figure 3：Open set；non－open set；path connected region；non－path connected region．

Theorem 7 （page 1089）．Suppose \mathbf{F} is a vector field that is continuous on an open， path connected region D ．If $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ is independent of path in D ，then \mathbf{F} is a conservative vector field on D ；that is，there exists a function f such that $\nabla f=\mathbf{F}$ ． Proof．Let $A(a, b)$ be a fixed point in D ．We construct the potential function f by

$$
f(x, y)=\int_{(a, b)}^{(x, y)} \mathbf{F} \cdot \mathrm{d} \mathbf{r}
$$

for $(x, y) \in D$ ．Since $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ is independent of path，the function is well－defined． Now we will show that $\nabla f=\mathbf{F}$ ：

Figure 4：Choose suitable paths to prove $\nabla f=\mathbf{F}$ ．
Since D is open，there exists a disk contained in D with center (x, y) ．Choose any point $\left(x_{1}, y\right)$ in the disk with $x_{1}<x$ and let C consists of any path C_{1} from (a, b) to $\left(x_{1}, y\right)$ followed by the horizontal line segment C_{2} from $\left(x_{1}, y\right)$ to (x, y) ．Then

$$
f(x, y)=\int_{C_{1}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{(a, b)}^{\left(x_{1}, y\right)} \mathbf{F} \cdot \mathrm{d} \mathbf{r}+\int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} .
$$

Notice that the first of these integrals does not depend on x ，so

$$
\begin{equation*}
\frac{\partial}{\partial x} f(x, y)=0+\frac{\partial}{\partial x} \int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r} . \tag{2}
\end{equation*}
$$

Consider $C_{2}: \mathbf{r}(t)=t \mathbf{i}+y \mathbf{j}$ ，where t from x_{1} to x ，then $\mathbf{r}^{\prime}(t)=1 \mathbf{i}+0 \mathbf{j}$ and $\mathbf{F}(t)=P(t, y) \mathbf{i}+Q(t, y) \mathbf{j}$ ．Thus（2）gives

$$
\frac{\partial}{\partial x} f(x, y)=\frac{\partial}{\partial x} \int_{C_{2}} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\frac{\partial}{\partial x} \int_{x_{1}}^{x} P(t, y) \mathrm{d} t=P(x, y)
$$

Similarly，using a vertical line segment，consider $C=C_{1}^{\prime} \cup C_{2}^{\prime}, C_{2}^{\prime}: \mathbf{r}(t)=x \mathbf{i}+t \mathbf{j}$ ， where t from y_{1} to y ，then $\mathbf{r}^{\prime}(t)=0 \mathbf{i}+1 \mathbf{j}$ and $\mathbf{F}(t)=P(x, t) \mathbf{i}+Q(x, t) \mathbf{j}$ ．We have

$$
\frac{\partial}{\partial y} f(x, y)=\frac{\partial}{\partial y} \int_{C_{2}^{\prime}} \mathbf{F} \cdot \mathrm{d} \mathbf{r}=\frac{\partial}{\partial y} \int_{y_{1}}^{y} Q(x, t) \mathrm{d} t=Q(x, y)
$$

Therefore，we know that

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}=\nabla f
$$

\square 由 Theorem 7 知：第二類曲線積分與路徑選取無關 \Rightarrow 保守向量場。

Next，we will determine whether or not a vector field \mathbf{F} is conservative．Suppose that $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ is conservative，where P and Q have continuous first order partial derivatives．Then there is a function f such that $\mathbf{F}=\nabla f$ ，that is，$P=\frac{\partial f}{\partial x}$ and $Q=\frac{\partial f}{\partial y}$ ．By Clairaut＇s Theorem，we know

$$
\frac{\partial P}{\partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial Q}{\partial x} .
$$

Hence $Q_{x}=P_{y}$ is a necessary condition（必要條件）that $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}$ is conservative．
Theorem 8 （page 1090）．If $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ is a conservative vector field，where P and Q have continuous first order partial derivatives on a domain D ， then throughout D we have

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} .
$$

The condition $Q_{x}=P_{y}$ is a sufficient condition for a simply connected region．
Definition 9 （page 1090）．
（a）We say C is a simple curve（簡單曲線）if it doesn＇t intersect itself anywhere between its endpoints．$\left(\mathbf{r}\left(t_{1}\right) \neq \mathbf{r}\left(t_{2}\right)\right.$ when $\left.a<t_{1}<t_{2}<b\right)$ ．

Figure 5：（Left to right）Simple，not closed；simple closed；not simple，not closed； not simple，closed．
（b）D is a simply connected region（單連通區域）in a plane if it is path connected and every simple closed curve in D enclosed only points that are in D ．

Figure 6：Simply connected region；non simply connected region．

Theorem 10 （page 1091）．Let $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}$ be a vector field on an open simply－connected region D ．Suppose that P and Q have continuous first－order derivatives and

$$
\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} \quad \text { throughout } \quad D
$$

then \mathbf{F} is conservative．
We will prove Theorem 10 in the next section．
\square 直觀上，單連通區域代表此區域沒有「洞」一虧格爲零（genus）；而且無法分成兩塊。 Finally，we will use＂partial integration＂to find the potential functions．

Example 11 （page 1091）．
（a）If $\mathbf{F}(x, y)=(3+2 x y) \mathbf{i}+\left(x^{2}-3 y^{2}\right) \mathbf{j}$ ，find a function f such that $\mathbf{F}=\nabla f$ ．
（b）Evaluate the line integral $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ ，where C is the curve given by $\mathbf{r}(t)=$ $\mathrm{e}^{t} \sin t \mathbf{i}+\mathrm{e}^{t} \cos t \mathbf{j}$ ，and t from 0 to π ．

Solution．

Example 12 （page 1095）．Show that if the vector field $\mathbf{F}=P \mathbf{i}+Q \mathbf{j}+R \mathbf{k}$ is conservative and P, Q, R have continuous first order partial derivatives，then

$$
\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z}=\frac{\partial R}{\partial x}, \quad \text { and } \quad \frac{\partial Q}{\partial z}=\frac{\partial R}{\partial y} .
$$

Proof．Since $\mathbf{F}=\nabla f$ ，we have $P=f_{x}, Q=f_{y}$ ，and $R=f_{z}$ ．By Clairaut＇s Theorem， we know that $P_{y}=\left(f_{x}\right)_{y}=f_{x y}=f_{y x}=\left(f_{y}\right)_{x}=Q_{x}, P_{z}=\left(f_{x}\right)_{z}=f_{x z}=f_{z x}=$ $\left(f_{z}\right)_{x}=R_{x}$ ，and $Q_{z}=\left(f_{y}\right)_{z}=f_{y z}=f_{z y}=\left(f_{z}\right)_{y}=R_{y}$ ．

Example 13. If $\mathbf{F}(x, y, z)=y^{2} \mathbf{i}+\left(2 x y+\mathrm{e}^{3 z}\right) \mathbf{j}+3 y \mathrm{e}^{3 z} \mathbf{k}$, find a function f such that $\nabla f=\mathbf{F}$.

Solution.

Example 14 (page 1095). Let $\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=\frac{-y}{x^{2}+y^{2}} \mathbf{i}+\frac{x}{x^{2}+y^{2}} \mathbf{j}$.
(a) Show that $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$.
(b) Show that $\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}$ is not independent of path.
(c) Compute $\nabla \theta(x, y)$, where $\theta=\theta(x, y)$ is the polar angle function.

Solution.

Appendix：Conservation of Energy，page 1093

We will apply these ideas to a continuous force field \mathbf{F} that moves an object along a path C given by $\mathbf{r}(t), a \leq t \leq b$ ，where $\mathbf{r}(a)=A$ is the initial point and $\mathbf{r}(b)=B$ is the terminal point of C ．

According to Newton＇s Second Law of Motion，the force $\mathbf{F}(\mathbf{r}(t))$ at a point on C is related to the acceleration $\mathbf{a}(t)=\mathbf{r}^{\prime \prime}(t)$ by the equation $\mathbf{F}(\mathbf{r}(t))=m \mathbf{r}^{\prime \prime}(t)$ ，so the work done by the force on the object is

$$
\begin{align*}
W & =\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=\int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t=\int_{a}^{b} m \mathbf{r}^{\prime \prime}(t) \cdot \mathbf{r}^{\prime}(t) \mathrm{d} t \\
& =\frac{m}{2} \int_{a}^{b} \frac{\mathrm{~d}}{\mathrm{~d} t}\left(\mathbf{r}^{\prime}(t) \cdot \mathbf{r}^{\prime}(t)\right) \mathrm{d} t=\frac{m}{2} \int_{a}^{b} \frac{\mathrm{~d}}{\mathrm{~d} t}\left|\mathbf{r}^{\prime}(t)\right|^{2} \mathrm{~d} t=\left.\frac{m}{2}\left[\left|\mathbf{r}^{\prime}(t)\right|\right]\right|_{a} ^{b} \\
& =\frac{m}{2}\left(\left|\mathbf{r}^{\prime}(b)\right|^{2}-\left|\mathbf{r}^{\prime}(a)\right|^{2}\right)=\frac{1}{2} m|\mathbf{v}(b)|^{2}-\frac{1}{2} m|\mathbf{v}(a)|^{2}, \tag{3}
\end{align*}
$$

where $\mathbf{v}(t)=\mathbf{r}^{\prime}(t)$ is the velocity．
The quantity $\frac{1}{2} m|\mathbf{v}(t)|^{2}$ ，is called the kinetic energy（動能）of the object．There－ fore we can rewrite Equation（3）as $W=K(B)-K(A)$ ，which says that the work done by the force field along C is equal to the change in kinetic energy at the endpoints of C ．

Now let＇s further assume that \mathbf{F} is a conservative force field；that is，we can write $\mathbf{F}=\nabla f$ ．In physics，the potential energy（位能）of an object at the point (x, y, z) is defined as $P(x, y, z)=-f(x, y, z)$ ，so we have $\mathbf{F}=\nabla f=-\nabla P$ ．Then we have

$$
W=\int_{C} \mathbf{F} \cdot \mathrm{~d} \mathbf{r}=-\int_{C} \nabla P \cdot \mathrm{~d} \mathbf{r}=-(P(\mathbf{r}(b))-P(\mathbf{r}(a)))=P(A)-P(B) .
$$

Comparing this equation with $W=K(B)-K(A)$ ，we see that

$$
P(A)+K(A)=P(B)+K(B),
$$

which says that if an object moves from one point A to another point B under the influence of a conservative force field，then the sum of its potential energy and its kinetic energy remains constant．This is called the Law of Conservation of Energy （能量守恆定律）and it is the reason the vector field is called conservative．

