16.3 The Fundamental Theorem for Line Integrals, page 1087

Recall that Part 2 of the Fundamental Theorem of Calculus is

$$\int_{a}^{b} F'(x) \, \mathrm{d}x = F(b) - F(a), \tag{1}$$

where F'(x) is continuous on [a, b]. We also called equation (1) the Net Change Theorem: The integral of a rate of change is the net change.

Here we will introduce the Fundamental Theorem for line integrals, where we think of the gradient vector ∇f of a function f as a sort of derivative of f.

Theorem 1 (page 1087). Let C be a smooth curve given by the vector function $\mathbf{r}(t), a \leq t \leq b$. Let f be a differentiable function of two or three variables whose gradient vector ∇f is continuous on C. Then

$$\int_C \nabla f \cdot \mathrm{d}\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

□ 若向量場來自於函數的梯度 (保守向量場), 則線積分的值為兩端點函數值的差。 □ 第二類曲線積分的路徑有方向性, 即 $\int_C \nabla f \cdot d\mathbf{r} = -\int_{-C} \nabla f \cdot d\mathbf{r}$ 。

Figure 1: The fundamental theorem for line integrals.

Proof. By the Chain Rule and the Fundamental Theorem of Calculus, we have

$$\int_{C} \nabla f \cdot d\mathbf{r} = \int_{a}^{b} \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{a}^{b} \left(\frac{\partial f}{\partial x} \frac{dx}{dt} + \frac{\partial f}{\partial y} \frac{dy}{dt} + \frac{\partial f}{\partial z} \frac{dz}{dt} \right) dt$$
$$= \int_{a}^{b} \frac{d}{dt} f(\mathbf{r}(t)) dt = f(\mathbf{r}(b)) - f(\mathbf{r}(a)).$$

Theorem 1 is also true for piecewise smooth curves. This can be seen by subdividing C into a finite number of smooth curves and adding the resulting integrals.

Example 2 (page 1088). Find the work done by the gravitational field $\mathbf{F}(\mathbf{x}) = -\frac{GMm}{|\mathbf{x}|^3}\mathbf{x}$ in moving a particle with mass *m* from the point (3, 4, 12) to the point (2, 2, 0) along a piecewise smooth curve *C*.

Solution.

Independence of Path, page 1088

Suppose that C_1 and C_2 are two piecewise smooth curves, which are also called *paths* (路徑) with have the same initial point A and terminal point B.

Definition 3 (page 1088). Suppose that **F** is a continuous vector field with domain *D*. We say the line integral $\int_{C} \mathbf{F} \cdot d\mathbf{r}$ is *independent of path* (積分和路徑選取無關) if

$$\int_{C_1} \mathbf{F} \cdot \mathrm{d}\mathbf{r} = \int_{C_2} \mathbf{F} \cdot \mathrm{d}\mathbf{r}$$

for any two path C_1 and C_2 in D with the same initial and terminal points.

- In general vector field \mathbf{F} , $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} \neq \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$. (See 16.2, **Example 5**).
- For conservative vector field $\mathbf{F} = \nabla f$, the Fundamental Theorem for line integrals tells us $\int_{C_1} \nabla f \cdot d\mathbf{r} = \int_{C_2} \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) f(\mathbf{r}(a)).$
- The following discussion will say that the *only* vector fields that are independent of path are conservative vector fields.

□ 保守向量場 ⇒ 第二類曲線積分與路徑選取無關。

Definition 4 (page 1089). A curve is called *closed* (封閉曲線) if its terminal point coincides with its initial point, that is, $\mathbf{r}(b) = \mathbf{r}(a)$.

Figure 2: Closed curve (left) and non-closed curve (right).

Theorem 5 (page 1089). The line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D if and only if $\int_C \mathbf{F} \cdot d\mathbf{r} = 0$ for every closed path C in D.

Proof. (\Rightarrow) We choose any two points A and B on C and regard C as being composed of the path C_1 from A to B followed by the path C_2 from B to A. Then

$$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1 \cup C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{-C_2} \mathbf{F} \cdot d\mathbf{r} = 0.$$

(\Leftarrow) For any paths C_1 and C_2 from A to B in D, we define C to be the curve consisting of C_1 followed by $-C_2$. Then we get

$$0 = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{-C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} - \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

and hence $\int_{C_1} \mathbf{F} \cdot d\mathbf{r} = \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$.

- □ 第二類曲線積分與路徑無關 ⇔ 封閉曲線上的第二類曲線積分爲零。
- □ 在保守向量場 (例如重力場) 將一物沿封閉曲線做功為零。

Definition 6 (page 1089).

- (a) A domain D is open (開集合) if for every point P in D, there is a disk with center P that lies entirely in D. (D doesn't contain any of its boundary points.)
- (b) A domain *D* is *path connected* (路徑連通) if any two points in *D* can be joined by a path that lies in *D*.

Figure 3: Open set; non-open set; path connected region; non-path connected region.

Theorem 7 (page 1089). Suppose \mathbf{F} is a vector field that is continuous on an open, path connected region D. If $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path in D, then \mathbf{F} is a conservative vector field on D; that is, there exists a function f such that $\nabla f = \mathbf{F}$. *Proof.* Let A(a, b) be a fixed point in D. We construct the potential function f by

$$f(x,y) = \int_{(a,b)}^{(x,y)} \mathbf{F} \cdot \mathrm{d}\mathbf{r}$$

for $(x, y) \in D$. Since $\int_C \mathbf{F} \cdot d\mathbf{r}$ is independent of path, the function is well-defined. Now we will show that $\nabla f = \mathbf{F}$:

Figure 4: Choose suitable paths to prove $\nabla f = \mathbf{F}$.

Since D is open, there exists a disk contained in D with center (x, y). Choose any point (x_1, y) in the disk with $x_1 < x$ and let C consists of any path C_1 from (a, b)to (x_1, y) followed by the horizontal line segment C_2 from (x_1, y) to (x, y). Then

$$f(x,y) = \int_{C_1} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \int_{(a,b)}^{(x_1,y)} \mathbf{F} \cdot d\mathbf{r} + \int_{C_2} \mathbf{F} \cdot d\mathbf{r}$$

Notice that the first of these integrals does *not* depend on x, so

$$\frac{\partial}{\partial x}f(x,y) = 0 + \frac{\partial}{\partial x}\int_{C_2} \mathbf{F} \cdot d\mathbf{r}.$$
(2)

Consider C_2 : $\mathbf{r}(t) = t\mathbf{i} + y\mathbf{j}$, where t from x_1 to x, then $\mathbf{r}'(t) = 1\mathbf{i} + 0\mathbf{j}$ and $\mathbf{F}(t) = P(t, y)\mathbf{i} + Q(t, y)\mathbf{j}$. Thus (2) gives

$$\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial x}\int_{C_2} \mathbf{F} \cdot d\mathbf{r} = \frac{\partial}{\partial x}\int_{x_1}^x P(t,y)\,dt = P(x,y)$$

Similarly, using a vertical line segment, consider $C = C'_1 \cup C'_2$, $C'_2 : \mathbf{r}(t) = x \mathbf{i} + t \mathbf{j}$, where t from y_1 to y, then $\mathbf{r}'(t) = 0 \mathbf{i} + 1 \mathbf{j}$ and $\mathbf{F}(t) = P(x, t) \mathbf{i} + Q(x, t) \mathbf{j}$. We have

$$\frac{\partial}{\partial y}f(x,y) = \frac{\partial}{\partial y}\int_{C'_2} \mathbf{F} \cdot \mathrm{d}\mathbf{r} = \frac{\partial}{\partial y}\int_{y_1}^y Q(x,t)\,\mathrm{d}t = Q(x,y).$$

Therefore, we know that

$$\mathbf{F}(x,y) = P(x,y)\,\mathbf{i} + Q(x,y)\,\mathbf{j} = \frac{\partial f}{\partial x}\,\mathbf{i} + \frac{\partial f}{\partial y}\,\mathbf{j} = \nabla f.$$

□ 由 Theorem 7 知: 第二類曲線積分與路徑選取無關 \Rightarrow 保守向量場。

§16.3-4

Next, we will determine whether or not a vector field \mathbf{F} is conservative. Suppose that $\mathbf{F} = P \mathbf{i} + Q \mathbf{j}$ is conservative, where P and Q have continuous first order partial derivatives. Then there is a function f such that $\mathbf{F} = \nabla f$, that is, $P = \frac{\partial f}{\partial x}$ and $Q = \frac{\partial f}{\partial y}$. By Clairaut's Theorem, we know

$$\frac{\partial P}{\partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial Q}{\partial x}.$$

Hence $Q_x = P_y$ is a necessary condition ($\&
abla \& \begin{subarray}{c} \& \begin{subarray}{c} \& \& \begin{subarray}{c} A & A \end{subarray} \end{subarray}$ is conservative.

Theorem 8 (page 1090). If $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ is a conservative vector field, where P and Q have continuous first order partial derivatives on a domain D, then throughout D we have

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}.$$

The condition $Q_x = P_y$ is a sufficient condition for a simply connected region.

Definition 9 (page 1090).

(a) We say C is a simple curve (簡單曲線) if it doesn't intersect itself anywhere between its endpoints. ($\mathbf{r}(t_1) \neq \mathbf{r}(t_2)$ when $a < t_1 < t_2 < b$).

Figure 5: (Left to right) Simple, not closed; simple closed; not simple, not closed; not simple, closed.

(b) D is a simply connected region (單連通區域) in a plane if it is path connected and every simple closed curve in D enclosed only points that are in D.

Figure 6: Simply connected region; non simply connected region.

Theorem 10 (page 1091). Let $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$ be a vector field on an open simply-connected region D. Suppose that P and Q have continuous first-order derivatives and

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \quad throughout \quad D,$$

then \mathbf{F} is conservative.

We will prove Theorem 10 in the next section.

□ 直觀上, 單連通區域代表此區域沒有「洞」- 虧格爲零 (genus); 而且無法分成兩塊。 Finally, we will use "partial integration" to find the potential functions.

Example 11 (page 1091).

- (a) If $\mathbf{F}(x, y) = (3 + 2xy)\mathbf{i} + (x^2 3y^2)\mathbf{j}$, find a function f such that $\mathbf{F} = \nabla f$.
- (b) Evaluate the line integral $\int_C \mathbf{F} \cdot d\mathbf{r}$, where C is the curve given by $\mathbf{r}(t) = e^t \sin t \, \mathbf{i} + e^t \cos t \, \mathbf{j}$, and t from 0 to π .

Solution.

Example 12 (page 1095). Show that if the vector field $\mathbf{F} = P \mathbf{i} + Q \mathbf{j} + R \mathbf{k}$ is conservative and P, Q, R have continuous first order partial derivatives, then

$$\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}, \quad \frac{\partial P}{\partial z} = \frac{\partial R}{\partial x}, \text{ and } \frac{\partial Q}{\partial z} = \frac{\partial R}{\partial y}.$$

Proof. Since $\mathbf{F} = \nabla f$, we have $P = f_x$, $Q = f_y$, and $R = f_z$. By Clairaut's Theorem, we know that $P_y = (f_x)_y = f_{xy} = f_{yx} = (f_y)_x = Q_x$, $P_z = (f_x)_z = f_{xz} = f_{zx} = (f_z)_x = R_x$, and $Q_z = (f_y)_z = f_{yz} = f_{zy} = (f_z)_y = R_y$. **Example 13.** If $\mathbf{F}(x, y, z) = y^2 \mathbf{i} + (2xy + e^{3z}) \mathbf{j} + 3ye^{3z} \mathbf{k}$, find a function f such that $\nabla f = \mathbf{F}$.

Solution.

Example 14 (page 1095). Let $\mathbf{F}(x, y) = P(x, y) \mathbf{i} + Q(x, y) \mathbf{j} = \frac{-y}{x^2 + y^2} \mathbf{i} + \frac{x}{x^2 + y^2} \mathbf{j}$.

- (a) Show that $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$.
- (b) Show that $\int_C \mathbf{F} \cdot d\mathbf{r}$ is *not* independent of path.
- (c) Compute $\nabla \theta(x, y)$, where $\theta = \theta(x, y)$ is the polar angle function.

Solution.

Appendix: Conservation of Energy, page 1093

We will apply these ideas to a continuous force field \mathbf{F} that moves an object along a path C given by $\mathbf{r}(t), a \leq t \leq b$, where $\mathbf{r}(a) = A$ is the initial point and $\mathbf{r}(b) = B$ is the terminal point of C.

According to Newton's Second Law of Motion, the force $\mathbf{F}(\mathbf{r}(t))$ at a point on C is related to the acceleration $\mathbf{a}(t) = \mathbf{r}''(t)$ by the equation $\mathbf{F}(\mathbf{r}(t)) = m \mathbf{r}''(t)$, so the work done by the force on the object is

$$W = \int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt = \int_{a}^{b} m \,\mathbf{r}''(t) \cdot \mathbf{r}'(t) dt$$
$$= \frac{m}{2} \int_{a}^{b} \frac{d}{dt} (\mathbf{r}'(t) \cdot \mathbf{r}'(t)) dt = \frac{m}{2} \int_{a}^{b} \frac{d}{dt} |\mathbf{r}'(t)|^{2} dt = \frac{m}{2} \left[|\mathbf{r}'(t)| \right]_{a}^{b}$$
$$= \frac{m}{2} (|\mathbf{r}'(b)|^{2} - |\mathbf{r}'(a)|^{2}) = \frac{1}{2} m |\mathbf{v}(b)|^{2} - \frac{1}{2} m |\mathbf{v}(a)|^{2}, \qquad (3)$$

where $\mathbf{v}(t) = \mathbf{r}'(t)$ is the velocity.

The quantity $\frac{1}{2}m|\mathbf{v}(t)|^2$, is called the *kinetic energy* (動能) of the object. Therefore we can rewrite Equation (3) as W = K(B) - K(A), which says that the work done by the force field along C is equal to the change in kinetic energy at the endpoints of C.

Now let's further assume that **F** is a conservative force field; that is, we can write $\mathbf{F} = \nabla f$. In physics, the *potential energy* (位能) of an object at the point (x, y, z) is defined as P(x, y, z) = -f(x, y, z), so we have $\mathbf{F} = \nabla f = -\nabla P$. Then we have

$$W = \int_C \mathbf{F} \cdot d\mathbf{r} = -\int_C \nabla P \cdot d\mathbf{r} = -(P(\mathbf{r}(b)) - P(\mathbf{r}(a))) = P(A) - P(B).$$

Comparing this equation with W = K(B) - K(A), we see that

$$P(A) + K(A) = P(B) + K(B),$$

which says that if an object moves from one point A to another point B under the influence of a conservative force field, then the sum of its potential energy and its kinetic energy remains constant. This is called the *Law of Conservation of Energy* (能量守恆定律) and it is the reason the vector field is called *conservative*.