Chapter 16 Vector Calculus

16．1 Vector Fields，page 1068

Definition 1 （page 1069）．
（1）Let D be a set in \mathbb{R}^{2} ．A vector field on \mathbb{R}^{2}（向量場）is a map \mathbf{F} that assigns to each point (x, y) in D a two－dimensional vector $\mathbf{F}(x, y)$ ．
（2）Let E be a subset of \mathbb{R}^{3} ．A vector field on \mathbb{R}^{3} is a map \mathbf{F} that assigns to each point (x, y, z) in E a three－dimensional vector $\mathbf{F}(x, y, z)$ ．

The best way to picture a vector field is to draw the arrow representing the vector $\mathbf{F}(x, y)$ starting at the point (x, y) for a few representative points in D ．

Figure 1：Vector fields on \mathbb{R}^{2} and on \mathbb{R}^{3} ．
Since $\mathbf{F}(x, y)$ is a two－dimensional vector，we can write it in terms of its compo－ nent functions（分量函數）P and Q as follows：

$$
\mathbf{F}(x, y)=P(x, y) \mathbf{i}+Q(x, y) \mathbf{j}=(P(x, y), Q(x, y)) .
$$

Functions $P(x, y)$ and $Q(x, y)$ are called scalar function（純量函數）or scalar fields．
Example 2 （page 1070）．A vector field on \mathbb{R}^{2} is defined by $\mathbf{F}(x, y)=-y \mathbf{i}+x \mathbf{j}$ ． Denote $\mathbf{x}=x \mathbf{i}+y \mathbf{j}$ by the position vector．

Figure 2：Vector Fields $\mathbf{F}=-y \mathbf{i}+x \mathbf{j}=(-y, x)$ and $\mathbf{x}=x \mathbf{i}+y \mathbf{j}=(x, y)$ ．
Remark that $\mathbf{x} \cdot \mathbf{F}(\mathbf{x})=(x \mathbf{i}+y \mathbf{j}) \cdot(-y \mathbf{i}+x \mathbf{j})=-x y+x y=0$ ，so two vector fields are orthogonal（正交）．

Example 3 （page 1071）．Newton＇s Law of Gravitation states that the magnitude of the gravitational force between two objects with masses m and M is

$$
|\mathbf{F}|=\frac{G M m}{r^{2}},
$$

where r is the distance between the objects and G is the gravitational constant．
Let the position vector of the object with mass m be $\mathbf{x}=(x, y, z)$ ，then $r^{2}=|\mathbf{x}|^{2}$ ． Therefore the gravitational force acting on the object at \mathbf{x} is

$$
\begin{equation*}
\mathbf{F}(\mathbf{x})=-\frac{G M m}{|\mathbf{x}|^{2}} \frac{\mathbf{x}}{|\mathbf{x}|}=-\frac{G M m}{|\mathbf{x}|^{3}} \mathbf{x} \tag{1}
\end{equation*}
$$

and we say the equation（1）is gravitational field（重力場）．
Example 4 （page 1072）．Suppose an electric charge Q is located at the origin． According to Coulomb＇s Law，the electric force $\mathbf{F}(\mathbf{x})$（or electric field 電場）exerted by this charge on a charge q located at a point (x, y, z) with position vector $\mathbf{x}=$ (x, y, z) is

$$
\mathbf{F}(\mathbf{x})=\frac{\varepsilon Q q}{|\mathbf{x}|^{2}} \frac{\mathbf{x}}{|\mathbf{x}|}=\frac{\varepsilon Q q}{|\mathbf{x}|^{3}} \mathbf{x}
$$

where ε is a constant．For like charges，we have $Q q>0$ and the force is repulsive； for unlike charges，we have $Q q<0$ and the force is attractive．

Instead of considering the electric force \mathbf{F} ，physicists often consider the force per unit charge（電場強度）：

$$
\mathbf{E}(\mathbf{x})=\frac{1}{q} \mathbf{F}(\mathbf{x})=\frac{\varepsilon Q}{|\mathbf{x}|^{3}} \mathbf{x} .
$$

Gradient Fields（梯度場），page 1072

Recall that for a smooth function $f(x, y)$ ，the gradient ∇f ，or $\operatorname{grad} f$ ，is defined by

$$
\nabla f(x, y)=\operatorname{grad} f=f_{x}(x, y) \mathbf{i}+f_{y}(x, y) \mathbf{j}
$$

Likewise，if $f(x, y, z)$ is a scalar function of three variables，its gradient is a vector field on \mathbb{R}^{3} given by $\nabla f(x, y, z)=f_{x}(x, y, z) \mathbf{i}+f_{y}(x, y, z) \mathbf{j}+f_{z}(x, y, z) \mathbf{k}$ ．

Definition 5 （page 1072）．
（a）For a scalar function f ，we say ∇f is a gradient vector field（梯度向量場）．
（b）A vector field \mathbf{F} is called a conservative vector field（保守向量場）if it is the gradient of some scalar function，that is，if there exists a function f such that $\mathbf{F}=\nabla f$ ．In this situation f is called a potential function（位勢函數）for \mathbf{F} ．

Not all vector fields are conservative，but such fields do arise frequently in physics．

Example 6 (page 1073). The gravitational field \mathbf{F} is conservative because if we define a function

$$
f(x, y, z)=\frac{m M G}{\sqrt{x^{2}+y^{2}+z^{2}}}
$$

then

$$
\nabla f=
$$

Example 7. Let $f(x, y)$ be a smooth function, then the gradient vector field $\nabla f(x, y)$ is perpendicular to the level curves $f(x, y)=k$.

Figure 3: Level sets of $f(x, y)=x^{2}-y^{2}$ and the gradient field $\nabla f=2 x \mathbf{i}-2 y \mathbf{j}$.

In general, all conservative vector vector field \mathbf{F} is perpendicular to the level sets of its potential function f.

Exercise (page 1074). Match the functions f_{1}, f_{2}, f_{3}, and f_{4} with the plots of their gradient vector fields labeled I - IV. Give reasons for your choices.
(a) $f_{1}(x, y)=x^{2}+y^{2}$.
(b) $f_{2}(x, y)=x(x+y)$.
(c) $f_{3}(x, y)=(x+y)^{2}$.
(d) $f_{4}(x, y)=\sin \sqrt{x^{2}+y^{2}}$.

Figure 4: Gradient vector fields.

