
15.9 Change Variables in Multiple Integrals,

page 1052

Goal: Find relations of change of variable in double and triple integrals.

Recall that

(1) For a function of one variable f(x), we have the Substitution Rule:

∫ b

a

f(x) dx =

∫ d

c

f(x(u))x′(u) du,

where x = x(u) and a = x(c), b = x(d).

(2) In section 15.4, we get the formula of double integrals in polar coordinates.

Supppose that x = r cos θ, y = r sin θ, then

∫∫

R

f(x, y) dA =

∫∫

S

f(r cos θ, r sin θ)r dr dθ,

where S is the region in the rθ-plane that corresponds to the region R in the

xy-plane.

More generally, we consider a change of variables that is given by a C1 and one-to-

one transformation T form the uv-plane to the xy-plane (一次偏導數連續且一對一的

坐標變換):

T (u, v) = (x, y),

where x and y are related to u and v by the equations

T :

{

x = x(u, v)

y = y(u, v),
T−1 :

{

u = u(x, y)

v = v(x, y).

x

y

u

v

T

T−1

S

R(u0, v0)
(x0, y0)

Figure 1: Transformation T and inverse transformation T−1.
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Definition 1 (page 1053).

(a) The terminology C1 means that x(u, v) and y(u, v) have continuous first-order

partial derivatives.

(b) If T (u1, v1) = (x1, y1), then (x1, y1) is called the image of (u1, v1).

(c) T is called one-to-one if no two points have the same image.

(d) T transforms S into a region R in the xy-plane called the image of S, consisting

of the images of all points in S.

Example 2 (page 1053). A transformation is defined by the equations x = u2 −

v2, y = 2uv. Find the image of the square S = {(u, v)|0 ≤ u ≤ 1, 0 ≤ v ≤ 1}.

Solution.

Now we will see how a change of variables affects a double integral. We start

with a small rectangle S in the uv-plane whose lower corner is the point (u0, v0)

and whose dimensions are ∆u and ∆v. The image of S is a region R in the xy-

x

y

u

v

TS R

v = v0

u = u0

∆u

∆v

r(u, v0)

r
(u

0
,
v
)

(u0, v0)
(x0, y0)

Figure 2: Transformation T from a rectangle S to a region R.

plane, one of whose boundary points is (x0, y0) = T (u0, v0). The vector r(u, v) =

x(u, v) i+y(u, v) j is the position vector of the image of the point (u, v). The equation

§15.9-2



of the lower side of S is v = v0, whose image curve is given by the vector function

r(u, v0). The tangent vector at (x0, y0) to this image curve is

ru = xu(u0, v0) i+ yu(u0, v0) j

Similarly, the tangent vector at (x0, y0) to the image curve of the left side of S

(namely, u = u0) is

rv = xv(u0, v0) i+ yv(u0, v0) j

We can approximate the image region R = T (S) by a parallelogram determined by

the secant vectors

a = r(u0 +∆u, v0)− r(u0, v0) and b = r(u0, v0 +∆v)− r(u0, v0).

Since

ru = lim
∆u→0

r(u0 +∆u, v0)− r(u0, v0)

∆u

and so

r(u0 +∆u, v0)− r(u0, v0) ≈ ∆uru and r(u0, v0 +∆v)− r(u0, v0) ≈ ∆vrv.

This means that we can approximate R by a parallelogram determined by the vectors

∆uru and ∆vrv. Therefore we can approximate the area of R by the area of this

parallelogram

|(∆u)ru × (∆v)rv| = |ru × rv|∆u∆v =

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

∆u∆v.

Definition 3 (page 1055). The Jacobian of the transformation T given by x =

g(u, v) and y = h(u, v) is

∂(x, y)

∂(u, v)
=

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y

∂u

∂y

∂v

∣

∣

∣

∣

∣

=
∂x

∂u

∂y

∂v
−

∂x

∂v

∂y

∂u
.

With this notation we can get ∆A ≈
∣

∣

∣

∂(x,y)
∂(u,v)

∣

∣

∣
∆u∆v, where the Jacobian is eval-

uated at (u0, v0).

For the general region S in the uv-plane we divide S into rectangles Sij and

call their images in the xy-plane Rij . Applying the approximation to each Rij , we

approximate the double integral of f over R as follows:
∫∫

R

f(x, y) dA = lim
m,n→∞

m
∑

i=1

n
∑

j=1

f(xi, yi)∆A

= lim
m,n→∞

m
∑

i=1

n
∑

j=1

f(x(ui, vi), y(ui, vi))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

(ui,vi)

∆u∆v +H.O.T.

=

∫∫

S

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv.
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Change to Variables in a Double Integral (page 1056). Suppose that T is a C1

transformation whose Jacobian is nonzero and that maps a region S in the uv-plane

onto a region R in the xy-plane. Suppose that f is continuous on R and that R

and S are type I or type II plane regions. Suppose also that T is one-to-one, except

perhaps on the boundary of S. Then
∫∫

R

f(x, y) dA =

∫∫

S

f(x(u, v), y(u, v))

∣

∣

∣

∣

∂(x, y)

∂(u, v)

∣

∣

∣

∣

du dv.

Example 4 (page 1058). Evaluate the integral
∫∫

R
e

x+y

x−y dA, where R is the trape-

zoidal region with vertices (1, 0), (2, 0), (0,−2), and (0,−1).

Solution.

Example 5 (page 1057). Use x = u2−v2, y = 2uv to evaluate the integral
∫∫

R
y dA,

where R is the region bounded by the x-axis and the parabolas y2 = 4 − 4x and

y2 = 4 + 4x, y ≥ 0.

Solution.
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Example 6. Evaluate
∫∫

x2+xy+y2≤1
e−(x2+xy+y2) dA.

Solution.

Triple Integrals, page 1059

The Jacobian of the transformation T is the following 3× 3 determinant:

∂(x, y, z)

∂(u, v, w)
=

∣

∣

∣

∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂x
∂w

∂y

∂u

∂y

∂v

∂y

∂w
∂z
∂u

∂z
∂v

∂z
∂w

∣

∣

∣

∣

∣

∣

∣

.

We have the following formula for triple integrals:
∫∫

R

f(x, y, z) dV =

∫∫

S

f(x(u, v, w), y(u, v, w), z(u, v, w))

∣

∣

∣

∣

∂(x, y, z)

∂(u, v, w)

∣

∣

∣

∣

du dv dw.

Example 7. Elliptic cylindrical coordinate system is

x = ar cos θ, y = br sin θ, z̃ = cz,

where a, b, c > 0 are constants. The volume element is .

Example 8. Ellipsoidal coordinate system is

x = aρ sin φ cos θ, y = bρ sinφ sin θ, z = cρ cosφ,

where a, b, c > 0 are constants. The volume element is .

Appendix

Suppose that f(x) ∈ C1([a, b]), which implies |f ′(x)| ≤ M . Let ∆x = b−a
n
, then

∣

∣

∣

∣

∣

∫ b

a

f(x) dx−
n

∑

i=1

f(x∗
i )∆x

∣

∣

∣

∣

∣

≤
n

∑

i=1

∣

∣

∣

∣

max
[xi−1,xi]

f(x)− min
[xi−1,xi]

f(x)

∣

∣

∣

∣

∆x

≤

n
∑

i=1

|f ′(ξi)|(∆x)2 = M

n
∑

i=1

(b− a)2

n2
= M ·

(b− a)2

n
→ 0 as n → ∞.

So for integration, before we take summation, the 1
n
part is the whole material. We

can ignore higher order term such as 1
n2 because it tends to zero after summation

and n tends to infinity.
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Exercise. Evaluate the integral
∫∫

R
sin(x+y) cos(2x−y) dA, where R is the region

bounded by y = 2x− 1, y = 2x+ 3, y = −x, and y = −x+ 1.

Exercise. Evaluate the integral
∫∫∫

E
(x2y + 3xyz) dV , where E is the region 1 ≤

x ≤ 2, 0 ≤ xy ≤ 2, and 0 ≤ z ≤ 1.

Exercise. Evaluate the integral
∫∫

R
ex

2−xy+y2 dA, where R = {(x, y)|x2−xy+ y2 ≤

a2}.

Exercise. Evaluate the integral
∫∫

R
sin(x2 + 2xy + y2) dA, where R is the region

bounded by x+ y = 0, x = 0, and y = 0.

Exercise. Evaluate the integral
∫∫

R
x2

x2+4y2
dA, where R is the region bounded by

two ellipses x2 + 4y2 = 1 and x2 + 4y2 = 4.

Exercise. Evaluate the integral
∫ 3

2

0

∫ 1− y

2

y
(2x+ y)ey−x dx dy.

Exercise. Evaluate the integral
∫∫∫

E
(x + y + z)2 dV , where E = {(x, y, z)|2x2 +

3y2 + 5z2 + 6yz + 2xz ≤ 1}.

Exercise. Compute the area of the domain in the first quadrant bounded by the

four curves xy = 1, xy = 4, y

x2 = 1, and y

x2 = 2.

Exercise. Find the region E ⊂ R
3 for which the triple integral

∫∫∫

E
(4−x2− 4y2−

9z2) dV is a maximum, and compute this maximum value.

Exercise. Evaluate
∫∫

x2+xy+y2≤1
e−(x2+xy+y2) dA

Exercise. Find
∫∫∫

E
xyz dV , where E = {(x, y, z)|x ≥ 0, y ≥ 0,≥ 0, 36x2 + 16y2 +

9z2 ≤ 144}.

Exercise. Evaluate
∫∫

R
sin

(

2y−x

2y+x

)

dA, where R is the region bounded by 2y+ x =

1, 2y + x = 2, 2y − x = 0, and 2y + 5x = 0.

Exercise. Evaluate
∫∫

R
e−4x2+12xy−10y2 dA, where R is the region satisfying x ≥ 2y

and y ≥ 0.

Exercise. Evaluate
∫∫

R
e−4x2−9y2 dA, where R is the region satisfying 2x ≤ 3y and

x ≥ 0.

Exercise. Evaluate
∫∫

R
exy dA, where R is the region bounded by xy = 1, xy =

4, y = 1, and y = 3.

Exercise. Evaluate the double integral

∫∫

R

(x+ y)2 sin2(x− y) dA, where R is the

square region with vertices (π
2
, 0), (π, π

2
), (π

2
, π), and (0, π

2
).
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