15．9 Change Variables in Multiple Integrals， page 1052

Goal：Find relations of change of variable in double and triple integrals．
Recall that
（1）For a function of one variable $f(x)$ ，we have the Substitution Rule：

$$
\int_{a}^{b} f(x) \mathrm{d} x=\int_{c}^{d} f(x(u)) x^{\prime}(u) \mathrm{d} u
$$

where $x=x(u)$ and $a=x(c), b=x(d)$ ．
（2）In section 15．4，we get the formula of double integrals in polar coordinates． Supppose that $x=r \cos \theta, y=r \sin \theta$ ，then

$$
\iint_{R} f(x, y) \mathrm{d} A=\iint_{S} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta
$$

where S is the region in the $r \theta$－plane that corresponds to the region R in the $x y$－plane．

More generally，we consider a change of variables that is given by a C^{1} and one－to－ one transformation T form the $u v$－plane to the $x y$－plane（一次偏導數連續且一對一的坐標變換）：

$$
T(u, v)=(x, y),
$$

where x and y are related to u and v by the equations

$$
T:\left\{\begin{array}{l}
x=x(u, v) \\
y=y(u, v),
\end{array} \quad T^{-1}:\left\{\begin{array}{l}
u=u(x, y) \\
v=v(x, y) .
\end{array}\right.\right.
$$

Figure 1：Transformation T and inverse transformation T^{-1} ．

Definition 1 (page 1053).
(a) The terminology C^{1} means that $x(u, v)$ and $y(u, v)$ have continuous first-order partial derivatives.
(b) If $T\left(u_{1}, v_{1}\right)=\left(x_{1}, y_{1}\right)$, then $\left(x_{1}, y_{1}\right)$ is called the image of $\left(u_{1}, v_{1}\right)$.
(c) T is called one-to-one if no two points have the same image.
(d) T transforms S into a region R in the $x y$-plane called the image of S, consisting of the images of all points in S.

Example 2 (page 1053). A transformation is defined by the equations $x=u^{2}-$ $v^{2}, y=2 u v$. Find the image of the square $S=\{(u, v) \mid 0 \leq u \leq 1,0 \leq v \leq 1\}$.

Solution.

Now we will see how a change of variables affects a double integral. We start with a small rectangle S in the $u v$-plane whose lower corner is the point $\left(u_{0}, v_{0}\right)$ and whose dimensions are Δu and Δv. The image of S is a region R in the $x y$ -

Figure 2: Transformation T from a rectangle S to a region R.
plane, one of whose boundary points is $\left(x_{0}, y_{0}\right)=T\left(u_{0}, v_{0}\right)$. The vector $\mathbf{r}(u, v)=$ $x(u, v) \mathbf{i}+y(u, v) \mathbf{j}$ is the position vector of the image of the point (u, v). The equation
of the lower side of S is $v=v_{0}$, whose image curve is given by the vector function $\mathbf{r}\left(u, v_{0}\right)$. The tangent vector at $\left(x_{0}, y_{0}\right)$ to this image curve is

$$
\mathbf{r}_{u}=x_{u}\left(u_{0}, v_{0}\right) \mathbf{i}+y_{u}\left(u_{0}, v_{0}\right) \mathbf{j}
$$

Similarly, the tangent vector at $\left(x_{0}, y_{0}\right)$ to the image curve of the left side of S (namely, $u=u_{0}$) is

$$
\mathbf{r}_{v}=x_{v}\left(u_{0}, v_{0}\right) \mathbf{i}+y_{v}\left(u_{0}, v_{0}\right) \mathbf{j}
$$

We can approximate the image region $R=T(S)$ by a parallelogram determined by the secant vectors

$$
\mathbf{a}=\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \quad \text { and } \quad \mathbf{b}=\mathbf{r}\left(u_{0}, v_{0}+\Delta v\right)-\mathbf{r}\left(u_{0}, v_{0}\right)
$$

Since

$$
\mathbf{r}_{u}=\lim _{\Delta u \rightarrow 0} \frac{\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right)}{\Delta u}
$$

and so

$$
\mathbf{r}\left(u_{0}+\Delta u, v_{0}\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \approx \Delta u \mathbf{r}_{u} \quad \text { and } \quad \mathbf{r}\left(u_{0}, v_{0}+\Delta v\right)-\mathbf{r}\left(u_{0}, v_{0}\right) \approx \Delta v \mathbf{r}_{v}
$$

This means that we can approximate R by a parallelogram determined by the vectors $\Delta u \mathbf{r}_{u}$ and $\Delta v \mathbf{r}_{v}$. Therefore we can approximate the area of R by the area of this parallelogram

$$
\left|(\Delta u) \mathbf{r}_{u} \times(\Delta v) \mathbf{r}_{v}\right|=\left|\mathbf{r}_{u} \times \mathbf{r}_{v}\right| \Delta u \Delta v=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \Delta u \Delta v .
$$

Definition 3 (page 1055). The Jacobian of the transformation T given by $x=$ $g(u, v)$ and $y=h(u, v)$ is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \frac{\partial y}{\partial v}-\frac{\partial x}{\partial v} \frac{\partial y}{\partial u} .
$$

With this notation we can get $\Delta A \approx\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \Delta u \Delta v$, where the Jacobian is evaluated at $\left(u_{0}, v_{0}\right)$.

For the general region S in the $u v$-plane we divide S into rectangles $S_{i j}$ and call their images in the $x y$-plane $R_{i j}$. Applying the approximation to each $R_{i j}$, we approximate the double integral of f over R as follows:

$$
\begin{aligned}
\iint_{R} f(x, y) \mathrm{d} A & =\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i}, y_{i}\right) \Delta A \\
& =\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x\left(u_{i}, v_{i}\right), y\left(u_{i}, v_{i}\right)\right)\left|\frac{\partial(x, y)}{\partial(u, v)}\right|_{\left(u_{i}, v_{i}\right)} \Delta u \Delta v+\text { H.O.T. } \\
& =\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v .
\end{aligned}
$$

Change to Variables in a Double Integral (page 1056). Suppose that T is a C^{1} transformation whose Jacobian is nonzero and that maps a region S in the uv-plane onto a region R in the xy-plane. Suppose that f is continuous on R and that R and S are type I or type II plane regions. Suppose also that T is one-to-one, except perhaps on the boundary of S. Then

$$
\iint_{R} f(x, y) \mathrm{d} A=\iint_{S} f(x(u, v), y(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v .
$$

Example 4 (page 1058). Evaluate the integral $\iint_{R} \mathrm{e}^{\frac{x+y}{x-y}} \mathrm{~d} A$, where R is the trapezoidal region with vertices $(1,0),(2,0),(0,-2)$, and $(0,-1)$.

Solution.

Example 5 (page 1057). Use $x=u^{2}-v^{2}, y=2 u v$ to evaluate the integral $\iint_{R} y \mathrm{~d} A$, where R is the region bounded by the x-axis and the parabolas $y^{2}=4-4 x$ and $y^{2}=4+4 x, y \geq 0$.

Solution.

Example 6. Evaluate $\iint_{x^{2}+x y+y^{2} \leq 1} \mathrm{e}^{-\left(x^{2}+x y+y^{2}\right)} \mathrm{d} A$.

Solution.

Triple Integrals, page 1059

The Jacobian of the transformation T is the following 3×3 determinant:

$$
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\
\frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right| .
$$

We have the following formula for triple integrals:

$$
\iint_{R} f(x, y, z) \mathrm{d} V=\iint_{S} f(x(u, v, w), y(u, v, w), z(u, v, w))\left|\frac{\partial(x, y, z)}{\partial(u, v, w)}\right| \mathrm{d} u \mathrm{~d} v \mathrm{~d} w
$$

Example 7. Elliptic cylindrical coordinate system is

$$
x=a r \cos \theta, \quad y=b r \sin \theta, \quad \tilde{z}=c z,
$$

where $a, b, c>0$ are constants. The volume element is \qquad .

Example 8. Ellipsoidal coordinate system is

$$
x=a \rho \sin \phi \cos \theta, \quad y=b \rho \sin \phi \sin \theta, \quad z=c \rho \cos \phi,
$$

where $a, b, c>0$ are constants. The volume element is \qquad .

Appendix

Suppose that $f(x) \in C^{1}([a, b])$, which implies $\left|f^{\prime}(x)\right| \leq M$. Let $\Delta x=\frac{b-a}{n}$, then

$$
\begin{aligned}
& \left|\int_{a}^{b} f(x) \mathrm{d} x-\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x\right| \leq \sum_{i=1}^{n}\left|\max _{\left[x_{i-1}, x_{i}\right]} f(x)-\min _{\left[x_{i-1}, x_{i}\right]} f(x)\right| \Delta x \\
\leq & \sum_{i=1}^{n}\left|f^{\prime}\left(\xi_{i}\right)\right|(\Delta x)^{2}=M \sum_{i=1}^{n} \frac{(b-a)^{2}}{n^{2}}=M \cdot \frac{(b-a)^{2}}{n} \rightarrow 0 \text { as } n \rightarrow \infty .
\end{aligned}
$$

So for integration, before we take summation, the $\frac{1}{n}$ part is the whole material. We can ignore higher order term such as $\frac{1}{n^{2}}$ because it tends to zero after summation and n tends to infinity.

Exercise. Evaluate the integral $\iint_{R} \sin (x+y) \cos (2 x-y) \mathrm{d} A$, where R is the region bounded by $y=2 x-1, y=2 x+3, y=-x$, and $y=-x+1$.

Exercise. Evaluate the integral $\iiint_{E}\left(x^{2} y+3 x y z\right) \mathrm{d} V$, where E is the region $1 \leq$ $x \leq 2,0 \leq x y \leq 2$, and $0 \leq z \leq 1$.

Exercise. Evaluate the integral $\iint_{R} \mathrm{e}^{x^{2}-x y+y^{2}} \mathrm{~d} A$, where $R=\left\{(x, y) \mid x^{2}-x y+y^{2} \leq\right.$ $\left.a^{2}\right\}$.

Exercise. Evaluate the integral $\iint_{R} \sin \left(x^{2}+2 x y+y^{2}\right) \mathrm{d} A$, where R is the region bounded by $x+y=0, x=0$, and $y=0$.

Exercise. Evaluate the integral $\iint_{R} \frac{x^{2}}{x^{2}+4 y^{2}} \mathrm{~d} A$, where R is the region bounded by two ellipses $x^{2}+4 y^{2}=1$ and $x^{2}+4 y^{2}=4$.

Exercise. Evaluate the integral $\int_{0}^{\frac{3}{2}} \int_{y}^{1-\frac{y}{2}}(2 x+y) \mathrm{e}^{y-x} \mathrm{~d} x \mathrm{~d} y$.
Exercise. Evaluate the integral $\iiint_{E}(x+y+z)^{2} \mathrm{~d} V$, where $E=\left\{(x, y, z) \mid 2 x^{2}+\right.$ $\left.3 y^{2}+5 z^{2}+6 y z+2 x z \leq 1\right\}$.

Exercise. Compute the area of the domain in the first quadrant bounded by the four curves $x y=1, x y=4, \frac{y}{x^{2}}=1$, and $\frac{y}{x^{2}}=2$.

Exercise. Find the region $E \subset \mathbb{R}^{3}$ for which the triple integral $\iiint_{E}\left(4-x^{2}-4 y^{2}-\right.$ $\left.9 z^{2}\right) \mathrm{d} V$ is a maximum, and compute this maximum value.

Exercise. Evaluate $\iint_{x^{2}+x y+y^{2} \leq 1} \mathrm{e}^{-\left(x^{2}+x y+y^{2}\right)} \mathrm{d} A$
Exercise. Find $\iiint_{E} x y z \mathrm{~d} V$, where $E=\left\{(x, y, z) \mid x \geq 0, y \geq 0, \geq 0,36 x^{2}+16 y^{2}+\right.$ $\left.9 z^{2} \leq 144\right\}$.

Exercise. Evaluate $\iint_{R} \sin \left(\frac{2 y-x}{2 y+x}\right) \mathrm{d} A$, where R is the region bounded by $2 y+x=$ $1,2 y+x=2,2 y-x=0$, and $2 y+5 x=0$.

Exercise. Evaluate $\iint_{R} \mathrm{e}^{-4 x^{2}+12 x y-10 y^{2}} \mathrm{~d} A$, where R is the region satisfying $x \geq 2 y$ and $y \geq 0$.

Exercise. Evaluate $\iint_{R} \mathrm{e}^{-4 x^{2}-9 y^{2}} \mathrm{~d} A$, where R is the region satisfying $2 x \leq 3 y$ and $x \geq 0$.

Exercise. Evaluate $\iint_{R} \mathrm{e}^{x y} \mathrm{~d} A$, where R is the region bounded by $x y=1, x y=$ $4, y=1$, and $y=3$.
Exercise. Evaluate the double integral $\iint_{R}(x+y)^{2} \sin ^{2}(x-y) \mathrm{d} A$, where R is the square region with vertices $\left(\frac{\pi}{2}, 0\right),\left(\pi, \frac{\pi}{2}\right),\left(\frac{\pi}{2}, \pi\right)$, and $\left(0, \frac{\pi}{2}\right)$.

