15．8 Triple Integrals in Spherical Coordinates， page 1045

Goal：Define and compute triple integrals in spherical coordinates．

Spherical Coordinates，page 1045

The spherical coordinates（ ρ, θ, ϕ ）（球坐標）of a point P in space are shown in Fig－ ure 1 ，where $\rho=|O P|$ is the distance from the origin to P, θ is the same angle as in cylindrical coordinates，and ϕ is the angle between the positive z－axis and the line segment $O P$ ．Note that we assume $\rho \geq 0$ and $0 \leq \phi \leq \pi$ ．

Figure 1：Spherical coordinate system．
\square 不同的書籍或文章會用不同的記號（有的用 r 而非 ρ ）與定義方式（ ϕ 的取法不同）。
The spherical coordinate system is useful in problems where there is symmetry about a point，and the origin is placed at this point．Figure 2 shows the surfaces of $\rho=c, \theta=c$ ，and $\phi=c$ ．

Figure 2：（a）$\rho=c$ is a sphere．（b）$\theta=c$ is a half－plane．（c）$\phi=c$ is a half－cone．
Relations between rectangular coordinates and spherical coordinates are

$$
\begin{array}{lll}
x=\rho \sin \phi \cos \theta, & y=\rho \sin \phi \sin \theta, & z=\rho \cos \phi \\
\rho^{2}=x^{2}+y^{2}+z^{2}, & \tan \theta=\frac{y}{x}, & \tan ^{2} \phi=\frac{x^{2}+y^{2}}{z^{2}}
\end{array}
$$

Example 1 (page 1046). The point ($2, \frac{\pi}{4}, \frac{\pi}{3}$) is given in spherical coordinates. Plot the point and find its rectangular coordinates.

Solution.

Example 2 (page 1046). The point $(0,2 \sqrt{3},-2)$ is given in rectangular coordinates. Find spherical coordinates for this point.

Solution.

Evaluating Triple Integrals with Spherical Coordinates, page 1047

Consider the spherical wedge $E=\{(\rho, \theta, \phi) \mid a \leq \rho \leq b, \alpha \leq \theta \leq \beta, c \leq \phi \leq d\}$, where $a \geq 0$ and $\beta-\alpha \leq 2 \pi$, and $d-c \leq \pi$.
(1) Divide E equally into $E_{i j k}$ by $\rho=\rho_{i}, \theta=\theta_{j}$, and $\phi=\phi_{k}$.
(2) $E_{i j k}$ is approximately a rectangular box with dimensions $\Delta \rho, \rho_{i} \Delta \phi$, and $\rho_{i} \sin \phi_{k} \Delta \theta$. So an approximation to the volume of $E_{i j k}$ is given by

$$
\Delta V_{i j k} \approx(\Delta \rho)\left(\rho_{i} \Delta \phi\right)\left(\rho_{i} \sin \phi_{k} \Delta \theta\right)=\rho_{i}^{2} \sin \phi_{k} \Delta \rho \Delta \theta \Delta \phi .
$$

In fact, by the Mean Value Theorem (see the Appendix), the volume of $E_{i j k}$ is given exactly by

$$
\Delta V_{i j k}=\tilde{\rho}_{i}^{2} \sin \tilde{\phi}_{k} \Delta \rho \Delta \theta \Delta \phi,
$$

where $\left(\tilde{\rho}_{i}, \tilde{\theta}_{j}, \tilde{\phi}_{k}\right)$ is some point in $E_{i j k}$. Let $\left(x_{i j k}^{*}, y_{i j k}^{*}, z_{i j k}^{*}\right)$ be the rectangular coordinates of the sample point $\left(\tilde{\rho}_{i}, \tilde{\theta}_{j}, \tilde{\phi}_{k}\right)$.
(3) We get the Riemann sum

$$
\sum_{i=1}^{l} \sum_{j=1}^{m} \sum_{k=1}^{n} f\left(\tilde{\rho}_{i} \sin \tilde{\phi}_{k} \cos \tilde{\theta}_{j}, \tilde{\rho}_{i} \sin \tilde{\phi}_{k} \sin \tilde{\theta}_{j}, \tilde{\rho}_{i} \cos \phi_{j}\right) \tilde{\rho}_{i}^{2} \sin \tilde{\phi}_{k} \Delta \rho \Delta \theta \Delta \phi
$$

(4) When $l, m, n \rightarrow \infty$, we get the formula for triple integration in spherical coordinates:

$$
\iiint_{E} f \mathrm{~d} V=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{a}^{b} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi .
$$

Figure 3: Volume element of the spherical coordinate system.

This formula can be extended to include more general spherical regions such as $E=\left\{(\rho, \theta, \phi) \mid \alpha \leq \theta \leq \beta, c \leq \phi \leq d, g_{1}(\theta, \phi) \leq \rho \leq g_{2}(\theta, \phi)\right\}$, and in this case the triple integration will be

$$
\iiint_{E} f \mathrm{~d} V=\int_{c}^{d} \int_{\alpha}^{\beta} \int_{g_{1}(\theta, \phi)}^{g_{2}(\theta, \phi)} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi) \rho^{2} \sin \phi \mathrm{~d} \rho \mathrm{~d} \theta \mathrm{~d} \phi
$$

Example 3 (page 1048). Evaluate $\iiint_{B} \mathrm{e}^{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \mathrm{~d} V$, where B is the unit ball: $B=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leq 1\right\}$.

Solution.

Example 4 (page 1048). Use spherical coordinates to find the volume of the solid that lies above the cone $z=\sqrt{x^{2}+y^{2}}$ and below the sphere $x^{2}+y^{2}+z^{2}=z$.

Solution.

Appendix (Proof of the following statement)

"For all spherical wedge E, there exists $(\tilde{\rho}, \tilde{\theta}, \tilde{\phi})$ in E so that $\Delta V=\tilde{\rho}^{2} \sin \tilde{\phi} \Delta \rho \Delta \theta \Delta \phi$."

Figure 4: Volume element of the spherical coordinate system.
(a) Show that "the volume of the solid bounded above by the sphere $r^{2}+z^{2}=a^{2}$ and below by the cone $z=r \cot \phi_{0}, 0<\phi_{0}<\frac{\pi}{2}$, and $\theta_{1} \leq \theta \leq \theta_{2}$, is $V=$ $\frac{a^{3} \Delta \theta}{3}\left(1-\cos \phi_{0}\right)$, where $\Delta \theta=\theta_{2}-\theta_{1} "$. Using the cylindrical coordinates,

$$
\begin{aligned}
V & =\int_{\theta_{1}}^{\theta_{2}} \int_{0}^{a \sin \phi_{0}} \int_{r \cot \phi_{0}}^{\sqrt{a^{2}-r^{2}}} r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta=\Delta \theta \int_{0}^{a \sin \phi_{0}}\left(r \sqrt{a^{2}-r^{2}}-r^{2} \cot \phi_{0}\right) \mathrm{d} r \\
& =\left.\frac{\Delta \theta}{3}\left[-\left(a^{2}-r^{2}\right)^{\frac{3}{2}}-r^{3} \cot \phi_{0}\right]\right|_{r=0} ^{r=a \sin \phi_{0}} \\
& =\frac{\Delta \theta}{3}\left(-\left(a^{2}-a^{2} \sin ^{2} \phi_{0}\right)^{\frac{3}{2}}+a^{3}-a^{3} \sin ^{3} \phi_{0} \cot \phi_{0}\right) \\
& =\frac{a^{3} \Delta \theta}{3}\left(1-\cos ^{3} \phi_{0}-\sin ^{2} \phi_{0} \cos \phi_{0}\right)=\frac{a^{3} \Delta \theta}{3}\left(1-\cos \phi_{0}\right) .
\end{aligned}
$$

(b) Show that the volume of the spherical wedge given by $\rho_{1} \leq \rho \leq \rho_{2}, \theta_{1} \leq \theta \leq$ $\theta_{2}, \phi_{1} \leq \phi \leq \phi_{2}$ is $\Delta V=\frac{\Delta \theta}{3}\left(\rho_{2}^{3}-\rho_{1}^{3}\right)\left(\cos \phi_{1}-\cos \phi_{2}\right)$. Denote $V_{i j}$ by the volume of the region bounded by the sphere of radius ρ_{i} and the cone with angle ϕ_{j}, and θ from θ_{1} to θ_{2}. Then we have

$$
\begin{aligned}
V & =\left(V_{22}-V_{21}\right)-\left(V_{12}-V_{11}\right) \\
& =\frac{\Delta \theta}{3}\left(\rho_{2}^{3}\left(1-\cos \phi_{2}\right)-\rho_{2}^{3}\left(1-\cos \phi_{1}\right)-\rho_{1}^{3}\left(1-\cos \phi_{2}\right)+\rho_{1}^{3}\left(1-\cos \phi_{1}\right)\right) \\
& =\frac{\Delta \theta}{3}\left(\rho_{2}^{3}-\rho_{1}^{3}\right)\left(\cos \phi_{1}-\cos \phi_{2}\right) .
\end{aligned}
$$

(c) By the Mean Value Theorem with $f(\rho)=\rho^{3}$, there exists some $\tilde{\rho} \in\left(\rho_{1}, \rho_{2}\right)$ such that $f\left(\rho_{2}\right)-f\left(\rho_{1}\right)=f^{\prime}(\tilde{\rho})\left(\rho_{2}-\rho_{1}\right) \Rightarrow \rho_{2}^{3}-\rho_{1}^{3}=3 \tilde{\rho}^{2} \Delta \rho$. Similarly, for $g(\phi)=\cos \phi$, there exists $\tilde{\phi} \in\left(\phi_{1}, \phi_{2}\right)$ such that $g\left(\phi_{2}\right)-g\left(\phi_{1}\right)=g^{\prime}(\tilde{\phi})\left(\phi_{2}-\right.$ $\left.\phi_{1}\right) \Rightarrow \cos \phi_{1}-\cos \phi_{2}=\sin \tilde{\phi} \Delta \phi$. Hence for each spherical wedge E, there exists $(\tilde{\rho}, \tilde{\theta}, \tilde{\phi})$ in E such that

$$
\Delta V_{i j k}=\tilde{\rho}_{i}^{2} \sin \tilde{\phi}_{k} \Delta \rho \Delta \theta \Delta \phi .
$$

