15．7 Triple Integrals in Cylindrical Coordinates， page 1040

Goal：Compute triple integrals in cylindrical coordinates．

Cylindrical Coordinates，page 1040

In the cylindrical coordinate system（柱坐標系），a point P in three－dimensional space is represented by the ordered triple (r, θ, z) ，where r and θ are polar coordinates of the projection of P onto the $x y$－plane and z is the distance from P to the $x y$－plane．

Figure 1：Cylindrical coordinate system．
－Relation from cylindrical to rectangular：$x=r \cos \theta, y=r \sin \theta, z=z$ ．
－Relation from rectangular to cylindrical：$r^{2}=x^{2}+y^{2}, \tan \theta=\frac{y}{x}, z=z$ ．
Example 1 （page 1041）．
（a）Find rectangular coordinates of the point with cylindrical coordinates $\left(2, \frac{2}{3} \pi, 1\right)$ ．
（b）Find cylindrical coordinates of the point with rectangular coordinates（3，－3，－7）．

Solution．

（a）Since $x=$ \qquad ，$y=$ \qquad ，$z=$ \qquad ．the point is \qquad in rectangular coordinates．
（b）Since $r=$ \qquad , $\tan \theta=$ \qquad ，$z=$ \qquad ，one of cylindrical coordinates is \qquad ，and another is \qquad ． As with polar coordinates，there are infinitely many choices．

Example 2 （page 1041）．Describe the surface whose equation in cylindrical coor－ dinates is $z=r$ ．

Solution．Since $z^{2}=r^{2}=x^{2}+y^{2}$ ，it is a \qquad whose axis is the z－axis．

Evaluating Triple Integrals with Cylindrical Coordinates, page 1042

Suppose that E is a type z region whose projection D onto the $x y$-plane is conveniently described in polar coordinates. Suppose that $f(x, y, z)$ is continuous and

$$
E=\left\{(x, y, z) \mid(x, y) \in D, u_{1}(x, y) \leq z \leq u_{2}(x, y)\right\},
$$

where D is given in polar coordinates by $D=\left\{(r, \theta) \mid \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta)\right\}$. We get the formula for triple integration in cylindrical coordinates:

$$
\iiint_{E} f(x, y, z) \mathrm{d} V=\int_{\alpha}^{\beta} \int_{r=h_{1}(\theta)}^{r=h_{2}(\theta)} \int_{z=u_{1}(r \cos \theta, r \sin \theta)}^{z=u_{2}(r \cos \theta, r \sin \theta)} f(r \cos \theta, r \sin \theta, z) r \mathrm{~d} z \mathrm{~d} r \mathrm{~d} \theta .
$$

Figure 2: Cylindrical coordinate system.

Example 3. Evaluate $A=\int_{-2}^{2} \int_{-\sqrt{4-x^{2}}}^{\sqrt{4-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{2}\left(x^{2}+y^{2}\right) \mathrm{d} z \mathrm{~d} y \mathrm{~d} x$.

Solution.

Homework (page 1044). Find the volume of the solid enclosed by the three cylinders $x^{2}+y^{2}=1, x^{2}+z^{2}=1$, and $y^{2}+z^{2}=1$.

Solution. The volume is
We leave the calculation of this integral as an Exercise.

