## 15．5 Surface Area，page 1026

Goal：Find the formula of the surface area of the graph of $f(x, y)$ ．
Let $S$ be a surface with equation $z=f(x, y)$ ，where $f(x, y)$ has continuous partial derivatives．We assume that $f(x, y) \geq 0$ and the domain $D$ of $f$ is a rectangle．The idea is to approximate the surface area by the＂tangent plane areas．＂
（1）Divide $D$ into small rectangles $R_{i j}$ with area $\Delta A=\Delta x \Delta y$ ．
（2）If we choose $\left(x_{i}, y_{i}\right)$ ，the corner of $R_{i j}$ closest to the origin，as a sample point， then the tangent plane to $S$ at $P_{i j}=\left(x_{i}, y_{j}, f\left(x_{i}, y_{j}\right)\right)$ is an approximation to $S$ near $P_{i j}$ ．The area $\Delta T_{i j}$ of the part of this tangent plane that lies directly above $R_{i j}$ is an approximation to the area $\Delta S_{i j}$ of the part of $S$ that lies directly above $R_{i j}$ ．

$$
\begin{aligned}
\Delta T_{i j} & =\left|\mathbf{u}_{i} \times \mathbf{v}_{j}\right|=\left|\left(\Delta x \mathbf{i}+f_{x}\left(x_{i}, y_{i}\right) \Delta x \mathbf{k}\right) \times\left(\Delta y \mathbf{j}+f_{y}\left(x_{i}, y_{j}\right) \Delta y \mathbf{k}\right)\right| \\
& =\left|-f_{x}\left(x_{i}, y_{i}\right) \Delta x \Delta y \mathbf{i}-f_{y}\left(x_{i}, y_{i}\right) \Delta x \Delta y \mathbf{j}+\Delta x \Delta y \mathbf{k}\right| \\
& =\sqrt{1+\left(f_{x}\left(x_{i}, y_{i}\right)\right)^{2}+\left(f_{y}\left(x_{i}, y_{i}\right)\right)^{2}} \Delta A .
\end{aligned}
$$



Figure 1：The area of a parallelogram $\Delta T_{i j}=\left|\mathbf{u}_{i} \times \mathbf{v}_{j}\right|$ ．
（3）The sum $\sum_{i=1}^{m} \sum_{j=1}^{n} \Delta T_{i j}$ is an approximation to the total area of $S$ ．
（4）We define the surface area（曲面面積）of $S$ to be

$$
\operatorname{Area}(S)=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} \sqrt{1+\left(f_{x}\left(x_{i}, y_{i}\right)\right)^{2}+\left(f_{y}\left(x_{i}, y_{i}\right)\right)^{2}} \Delta A
$$

Theorem 1 （page 1027）．The area of the surface with equation $z=f(x, y),(x, y) \in$ $D$ ，where $f_{x}$ and $f_{y}$ are continuous，is

$$
\operatorname{Area}(S)=\iint_{D} \sqrt{1+\left(f_{x}(x, y)\right)^{2}+\left(f_{y}(x, y)\right)^{2}} \mathrm{~d} A
$$

$\square$ 類比於平面曲線 $(x, y=f(x)), a \leq x \leq b$ 的弧長公式：$L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x$ ．

Example 2 (page 1027). Find the surface area of the part of the surface $z=x^{2}+2 y$ that lies above the triangular region $T$ in the $x y$-plane with vertices $(0,0),(1,0)$, and ( 1,1 ).

## Solution.

Example 3 (page 1028). Find the area of the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies within the cylinder $x^{2}+y^{2}=2 x$.

## Solution.

Example (TA) 4. Find the area of the surface $z=\frac{2}{3}\left(x^{\frac{3}{2}}+y^{\frac{3}{2}}\right), 0 \leq x, y \leq 1$.
Solution.

