15．2 Double Integrals over General Regions，page 1001

Goal：We will learn how to integrate a function $f(x, y)$ over a bounded region D ． Define a new function $F(x, y)$ with a rectangular region $R \supseteq D$ by

$$
F(x, y)=\left\{\begin{array}{cl}
f(x, y) & \text { if }(x, y) \text { is in } D \tag{1}\\
0 & \text { if }(x, y) \text { is in } R \text { but not in D. }
\end{array}\right.
$$

Figure 1：Double integral of f over D ．

Definition 1 （page 1001）．If $F(x, y)$ is integrable over R ，then we define the double integral of $f(x, y)$ over D（區域 D 上函數 $f(x, y)$ 的重積分）by

$$
\iint_{D} f(x, y) \mathrm{d} A=\iint_{R} F(x, y) \mathrm{d} A, \quad \text { where } F \text { is given by }(1) .
$$

Definition 2 （page 1002）．
（1）A plane region D is said to be of type I if it lies between the graphs of two continuous functions of x ，that is，$D=\left\{(x, y) \mid a \leq x \leq b, g_{1}(x) \leq y \leq g_{2}(x)\right\}$ ， where $g_{1}(x)$ and $g_{2}(x)$ are continuous on $[a, b]$ ．
（2）A plane region D is said to be of type $I I$ if it lies between the graphs of two continuous functions of y ，that is，$D=\left\{(x, y) \mid h_{1}(y) \leq x \leq h_{2}(y), c \leq y \leq d\right\}$ ， where $h_{1}(y)$ and $h_{2}(y)$ are continuous on $[c, d]$ ．

Figure 2：Type I and Type II region．

Theorem 3 （page 1002－1003）．
（a）If $f(x, y)$ is continuous on a type I region D ，then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b}\left(\int_{y=g_{1}(x)}^{y=g_{2}(x)} f(x, y) \mathrm{d} y\right) \mathrm{d} x .
$$

（b）If $f(x, y)$ is continuous on a type II region D ，then

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{c}^{d}\left(\int_{x=h_{1}(y)}^{x=h_{2}(y)} f(x, y) \mathrm{d} x\right) \mathrm{d} y .
$$

Proof of（a）．We choose a rectangle $R=[a, b] \times[c, d]$ ，where c and d are constants satisfy $c \leq \min _{x \in[a, b]} g_{1}(x)$ and $d \geq \max _{x \in[a, b]} g_{2}(x)$ ．Let $F(x, y)$ be the function given by（1）． By Fubini＇s Theorem，we have

$$
\iint_{D} f(x, y) \mathrm{d} A=\iint_{R} F(x, y) \mathrm{d} A=\int_{a}^{b}\left(\int_{c}^{d} F(x, y) \mathrm{d} y\right) \mathrm{d} x .
$$

For fixed $x \in[a, b]$ ，since $F(x, y)=0$ if $y<g_{1}(x)$ or $y>g_{2}(x)$ ，the lower limit can be replaced by $g_{1}(x)$ ，and the upper limit can replaced by $g_{2}(x)$ ．Therefore，

$$
\iint_{D} f(x, y) \mathrm{d} A=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} F(x, y) \mathrm{d} y\right) \mathrm{d} x=\int_{a}^{b}\left(\int_{g_{1}(x)}^{g_{2}(x)} f(x, y) \mathrm{d} y\right) \mathrm{d} x
$$

because $F(x, y)=f(x, y)$ when $g_{1}(x) \leq y \leq g_{2}(y)$ ．非矩形區域上函數的積分，上下限範圍改成「函數」。若是先對 y 積分，上，下限當然是 y 的上下限，所以是 $y=g_{2}(x)$ 與 $y=g_{1}(x)$ 。學會畫圖（定義域）；熟練區域變換。
Example 4 （page 1003）．Evaluate $\iint_{D}(x+2 y) \mathrm{d} A$ ，where D is the region bounded by the parabolas $y=2 x^{2}$ and $y=x^{2}+1$ ．

Example 5. Find the volume of the solid that lies under the paraboloid $z=x^{2}+y^{2}$ and above the region D in the $x y$-plane bounded by the line $y=x$ and the parabola $y=x^{2}$.

Solution.

Solution 2.

Example 6. Evaluate $\iint_{D} x y \mathrm{~d} A$, where D is the region bounded by the line $y=$ $x-1$ and the parabola $y^{2}=x+1$.

Solution.

Example 7 (page 449, 1008). Find the volume common to two circular cylinders, each with radius r, if the axes of the cylinders intersect at right angles.

Solution.

Solution 2.

Example 8 (page 1006). Evaluate the iterated integral $\int_{0}^{1} \int_{x}^{1} \sin \left(y^{2}\right) \mathrm{d} y \mathrm{~d} x$.
Solution.

Properties of Double Integrals, page 1006

We assume that all of the integrals exist.
(a) $\iint_{D}(f(x, y)+g(x, y)) \mathrm{d} A=\iint_{D} f(x, y) \mathrm{d} A+\iint_{D} g(x, y) \mathrm{d} A$.
(b) $\iint_{D} c f(x, y) \mathrm{d} A=c \iint_{D} f(x, y) \mathrm{d} A$.
(c) If $f(x, y) \geq g(x, y)$ for all $(x, y) \in D$, then $\iint_{D} f(x, y) \mathrm{d} A \geq \iint_{D} g(x, y) \mathrm{d} A$.
(d) If $D=D_{1} \cup D_{2}$, where D_{1} and D_{2} don't overlap except on boundaries, then

$$
\iint_{D} f(x, y) \mathrm{d} A=\iint_{D_{1}} f(x, y) \mathrm{d} A+\iint_{D_{2}} f(x, y) \mathrm{d} A .
$$

This property can be used to evaluate double integrals over regions D that are neither type I nor type II but can be expressed as a union of regions of type I or type II.

Figure 3: D is neither type I nor type II. D_{1} is type I, D_{2} is type II.
(e) $\iint_{D} 1 \mathrm{~d} A=\operatorname{Area}(D)$.
(f) If $m \leq f(x, y) \leq M$ for all (x, y) in D, then

$$
m \operatorname{Area}(D) \leq \iint_{D} f(x, y) \mathrm{d} A \leq M \operatorname{Area}(D)
$$

Exercise. Find the integral $\int_{0}^{8} \int_{\sqrt[3]{y}}^{2} \sqrt{1+x^{4}} \mathrm{~d} x \mathrm{~d} y$.
Exercise. Evaluate the integral $\int_{0}^{\sqrt{\pi}} \int_{\frac{x}{2}}^{\frac{\sqrt{\pi}}{2}} \sin \left(y^{2}\right) \mathrm{d} y \mathrm{~d} x$.
Exercise. Evaluate the integral $\int_{0}^{4} \int_{\frac{y}{2}}^{2} \mathrm{e}^{x^{2}} \mathrm{~d} x \mathrm{~d} y$.
Exercise (page 1008). Find the volume of the solid bounded by the cylinder $y^{2}+$ $z^{2}=4$ and the planes $x=2 y, x=0, z=0$ in the first octant.

Example (TA) 9. Find the integral $\iint_{R}\left|y-x^{2}\right| \mathrm{d} A, R=[-1,1] \times[0,2]$.
Solution.

