14.7 Maximum and Minimum Values, page 959

Definition 1 (page 960). A function of two variables has a local mazimum (JBER
BARIERR) at (zo,yo) if f(z,y) < f(x0,y0) when (z,y) is near (xg,yo). (This means
that f(z,y) < f(zo,yo) for all points (x,y) in some disk with center (zg,1o).) The
number f(zg,yo) is called a local mazimum value (REBEBAIE). If f(x,y) > f(x0, yo)
when (z,y) is near (xg,yo), then f has a local minimum (JEEE/IMERE) at (w0, yo)
and f(xg, o) is a local minimum value (FEHE/IME).

Definition 2 (page 960). If the inequalities in Definition 1 hold for all points (z, y)
in the domain of f, then f has an absolute mazimum (FxR{E) or absolute minimum
(F/IME) at (2o, o)

(a) (b)

Figure 1: (a) Local and absolute minimum. (b) Local and absolute maximum.

Theorem 3 (page 960). If f has a local mazimum or minimum at (zo,yo) and the

first-order partial derivatives of f exist there, then f,(zo,y0) =0 and f,(xo,yo) = 0.

Proof. Let g(x) = f(x,yo). If f has a local maximum (or minimum) at (o, yo), then
g(x) has a local maximum (or minimum) at zp, so by Fermat’s Theorem, we get

g (xg) = 0 = fu(xo,yo). Similarly, by applying Fermat’s Theorem to the function
g(y) = g(z0,y0), we obtain ¢'(yo) = 0= f, (o, o). [

L] ERBAIE (20, yo) BB, HI V£ (20, v0) = (f2(0,%0), f4(T0,%0)) = (0,0) = 0,

Definition 4 (page 960). A point (zg, o) is called a critical point (FE5 E5) or sta-
tionary point (THeEh. BEL) of f if f.(xo,y0) = 0 and f,(z0,y0) = 0, or if one of
these partial derivatives does not exist.

[ ERBERRTRE fo(v0,90) = fy (20, v0) = 0 KBS BEEHTE REBTEENZE
L] B2 BRI AER LB, JERS .
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Example 5 (page 960). Consider f(z,y) = 2? + y* — 2z — 6y + 14, then

folz,y) =22 -2 f,(z,y) =2y —6.

These partial derivative are equal to 0 when x = 1 and y = 3, so the only critical
point is (1,3). Since f(z,y) =4+ (x —1)?+(y—3)* >4 for all z and y, f(1,3) =4
is a local minimum, and in fact it is the absolute minimum of f.

The graph of f is the with vertex (1,3,4).

Example 6 (page 960). Consider the function f(x,y) = y*—22. Since f, = —2z and
fy = 2y, the only critical point is . For points on the z-axis (x # 0) we have
f(x,0) = —2% < 0 and for points on the y-axis (y # 0) we have f(z,0) = y* > 0.
Thus every disk with center (0,0) contains points where f takes positive values and

negative values. Therefore, f has no extreme value.
The graph of f is the

Definition 7 (page 961). The graph of z = y? — 22 has a horizontal tangent plane
z = 0 at the origin. f(0,0) = 0 is a maximum in the direction of z-axis but a
minimum in the direction of the y-axis. Near the origin the graph has the shape of
a saddle and so (0,0) is called a saddle point (#%E5) of f.

Figure 2: (0,0) is a saddle point of f(x,y) = y* — 2.

For a function of one variable f(x), we use second derivative of f(x) to detect
the critical points are local maximum or local minimum. Here we will introduce the
Second Derivative Test for functions of two variables to investigate the properties

of critical points.

Definition 8. The Hessian matriz or Hessian (#fRHERE) of f(x,y) at (zq,yo) is

faa (0, %0) fmy(lbv Yo)

Hess (f)(xo, yo) = Fue(To,10)  fuu(T0, v0)

§14.7-2



Second Derivative Test (page 961). Suppose the second partial derivatives of f
are continuous on a disk with center (xo,yo), and suppose that f.(xo,yo) = 0 and

fy(zo,y0) = 0 (that is, (xo,yo) is a critical point of f). Let

D(x0,y0) = det (Hess(f)(w0,0)) = faz(Z0, Y0) fyy(To, o) — (fmy(x07y0))2-

(a) If D(xo,%0) > 0 and fr(x0,90) > 0, then f(xo,yo) is a local minimum.
(b) If D(xg,y0) > 0 and fru(x0,y0) <0, then f(xo,yo) is a local maximum.
(¢) If D(xg,y0) <0, then f(xo,y0) is not a local maximum or minimum.

[ 5 (c) Rk,
L % D(z0,y0) = 0, ZREIEI (oA, W/, B8 EETTRES 4 WA BRI 5218
Remark 9.

(1) BIFBIERTT LIS AL, ALl Hess(f) = PDP~!, Hh D B¥ A{iEE; P E4iE
BHASERE,

(2) K% det(AB) = det(BA), FiLMTHINELREH T8, Al det(Hess(f)) =
det(PDPY) = det(PP~1D) = det(ID) = det(D)s

(3) fou >0z AAMAORAE, M AEELG—EE FEUE. BRE) RE; fo. <
0« AAMORT, AEAEELG—EE FEE BEE) RE.

Example 10. Find the extreme value (local maximum and minimum values and
saddle points) of the function f(z,y) = 22% — 4xy + 3y*.

Solution.
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Absolute Maximum and Minimum Values, page 965

Recall that for one variable function f(x), the Extreme Value Theorem says that if
f is continuous on a closed interval [a,b], then f has an absolute maximum value
and an absolute minimum value. Absolute maximum and absolute minimum points
are happened at the critical points or endpoints.

We will introduce the Extreme Value Theorem of two variables in this section.
Definition 11 (page 965).

(a) A boundary point G2525) of a set D C R? is a point (2, yo) such that every

disk with center (xg,yo) contains points in D and also points not in D.
(b) A closed set (FA%E) D in R? is one that contains all its boundary points.

(c) A bounded set (B5+5) D in R? is one that is contained within some disk.

__________

(a) (b)

Figure 3: (a) Closed sets. (b) Sets that are not closed.

Extreme Value Theorem for Functions of Two Variables (page 965). If f is
continuous on a closed, bounded set D in R?, then f attains an absolute mazimum
value f(x1,y1) and an absolute minimum value f(x9,y2) at some points (x1,y1) and

(z2,92) in D.

To find the absolute maximum and minimum values of a continuous function f

on a closed, bounded set D:
(a) Find the values of f at the critical points of f in D.
(b) Find the extreme values of f on the boundary of D.

(¢) The largest of the values from step 1 and 2 is the absolute maximum value;

the smallest of these values is the absolute minimum value.

[ #% (eSS (EREHEE, I T B, B R ERAE R,
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Example 12. Find the extreme values of f(x,y) = 2% + xy + y*> — 42 + 3y in the
region bounded by x =0,y =0, and z +y = 4.

Solution.

Example 13. Find the absolute maximum and minimum values of f(z,y) = 4x +

6y — 22 — 3% in the region 22 + y? < 1.

Solution.
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Appendix, page 967

Proof of the Second Derivative Test. We compute the second-order directional deriva-

tive of f in the direction of u = (h, k). The first-order derivative is

Duf = foh + fyk.

Apply this theorem a second time, we have
0 0
Df = DulDuf) = V(Duf) = (- (Gl + Jyk) (e 10 ) - ()

= (foch + fuak)h + (foyh + fy)k = faah® + 2foyhk + fy,
fxxh + fxyk 2 kz 2

:facw(i "'__fmmf — Jay/-

fmw fmx( vy y)
Remark that D(zo,yo) = det(Hess(f)(x0, 40)) = (foafyy — ﬁy)
(a) If D(zo,y0) > 0 and fur(z0,y0) > 0, then D2 f(xg,yo) > 0 for any direction
u. If D2f(xg,y0) = 0 for some direction u, then £ = 0 and f..h + fo k = 0.
However, it implies (h,k) = (0,0) and it contradicts to h* + k? = 1. Hence

f(xo,y0) is a local minimum.

‘ (w0,90)"

(b) If D(xo,90) > 0 and f,.(w0,y0) < 0, then D2 f(zg,y0) < 0 for any direction
u. If D2 f(xo,y0) = 0 for some direction u, then k = 0 and f,.h + f.,k = 0.
However, it implies (h, k) = (0,0) and it contradicts to h* + k* = 1. Hence

f(zo,yo) is a local maximum.

(c) If D(zo,yo) < 0, we will find two different directions such that the signs of the

second derivatives of f are different.

* If fur > 0 and f,, <0, then choosing u = (h, k) = (1,0) implies D2f =
fez > 0. If we choose (h, k) = (0,1), then D2f = f,, <O0.

* If fur < 0and f,, > 0, then choosing u = (h, k) = (1,0) implies D2f =
fex < 0. If we choose (h, k) = (0,1), then D2f = f,, > 0.

* If fur > 0 and f,, > 0, then choosing u = (h, k) = (1,0) implies D2f =
fex > 0. If we choose (h, k) //(fuy, — fuz) such that k # 0, then D%f =

(71”“]”;5;]”3@/) k2 < 0.

* If frr < 0and fy, <0, then choosing u = (h, k) = (1,0) implies D2f =
frz < 0. If we choose (h,k)//(fey, —fez) such that k # 0, then D2f =

(facacfyy_fgy) k2 > O
fax )

Hence f(xg,yo) is not a local maximum or minimum.

§14.7-6



