# 14.6 Directional Derivatives and the Gradient Vector, page 946

#### **Directional Derivatives**, page 946

**Definition 1** (page 947). The directional derivative (方向導數) of f(x, y) at  $(x_0, y_0)$  in the direction of a unit vector  $\mathbf{u} = (a, b)$  is

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ha, y_0 + hb) - f(x_0, y_0)}{h}$$

if this limit exists.



Figure 1: Directional derivative.

□ u 必須是單位向量; 有時候只告知方向, 必須先把向量「單位化」後再計算方向導數。

**Theorem 2** (page 948). If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector  $\mathbf{u} = (a, b)$  and

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)a + f_y(x,y)b = (f_x(x,y), f_y(x,y)) \cdot (a,b).$$

*Proof.* Define  $g(h) = f(x(h), y(h)) = f(x_0 + ha, y_0 + hb)$ , then by the definition of a directional derivative and the Chain Rule, we have

$$D_{\mathbf{u}}f(x_0, y_0) = g'(0) = \left[\frac{\partial f}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}h} + \frac{\partial f}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}h}\right]\Big|_{h=0}$$
$$= f_x(x_0, y_0)a + f_y(x_0, y_0)b = (f_x(x_0, y_0), f_y(x_0, y_0)) \cdot (a, b).$$

If the unit vector  $\mathbf{u}$  makes an angle  $\theta$  with the positive x-axis, then we can write  $\mathbf{u} = (\cos \theta, \sin \theta)$  and the directional derivative becomes

$$D_{\mathbf{u}}f(x,y) = f_x(x,y)\cos\theta + f_y(x,y)\sin\theta = (f_x(x,y), f_y(x,y))\cdot(\cos\theta,\sin\theta).$$

#### The Gradient Vector, page 949

**Definition 3** (page 950). If f is a function of two variables x and y, then the gradient ( $\hat{H}$  $\hat{E}$ ) of f is the vector function  $\nabla f$  or grad f defined by

$$abla f(x,y) = \operatorname{grad} f(x,y) \stackrel{\text{\tiny def.}}{=} (f_x(x,y), f_y(x,y)) = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}.$$

**Theorem 4** (page 950). If f is a differentiable function of x and y, then f has a directional derivative in the direction of any unit vector  $\mathbf{u} = (a, b)$  and

$$D_{\mathbf{u}}f(x,y) = \nabla f(x,y) \cdot \mathbf{u}.$$

□ 方向導數爲「梯度向量」與「單位向量」內積。

□ 函數 f(x, y) 的梯度向量  $\nabla f = (f_x, f_y)$  是在 *xy*-平面上。

### Maximizing the Directional Derivative, page 952

**Theorem 5** (page 952). Suppose f is a differentiable function of two variables. The maximum value of the directional derivative  $D_{\mathbf{u}}f(x,y)$  is  $|\nabla f(x,y)|$  and it occurs when  $\mathbf{u}$  has the same direction as the gradient vector  $\nabla f(x,y)$ .

*Proof.* Since  $|\mathbf{u}| = 1$ , we have

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| |\mathbf{u}| \cos \theta = |\nabla f| \cos \theta,$$

where  $\theta$  is the angle between  $\nabla f$  and  $\mathbf{u}$ . The maximum value of  $\cos \theta$  is 1 and this occurs when  $\theta = 0$ . Therefore the maximum value of  $D_{\mathbf{u}}f$  is  $\nabla f$  when  $\mathbf{u}$  is the same direction as  $\nabla f$ .

□ 柯西不等式 (Cauchy inequality)  $\mathbf{u} \cdot \mathbf{v} \leq \|\mathbf{u}\| \|\mathbf{v}\|_{\circ}$ 

**Example 6.** Let  $f(x, y) = 2x^2 - xy + y^2 - 2x + y$ .

- (a) Find the directional derivative  $D_{\mathbf{u}}f(p)$ , where p = (0,0) and  $\mathbf{u} = \left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ .
- (b) Find the unit vector **v** that the directional derivative  $D_{\mathbf{v}}f(p)$  is maximal.

Solution.

#### Functions of Three Variables, page 950

Using vector notation, we can write the directional derivative in the compact form:

$$D_{\mathbf{u}}f(\mathbf{x}_0) = \lim_{h \to 0} \frac{f(\mathbf{x}_0 + h\mathbf{u}) - f(\mathbf{x}_0)}{h} = \nabla f(\mathbf{x}_0) \cdot \mathbf{u}.$$

where  $\mathbf{x}_0 = (x_0, y_0)$  if n = 2 and  $\mathbf{x}_0 = (x_0, y_0, z_0)$  if n = 3.

#### Tangent Planes to Level Surfaces, page 954

Suppose S is a level surface with equation F(x, y, z) = k, and let  $P(x_0, y_0, z_0)$  be a point on S. Let C be any curve that lies on the surface S and passes through the point P, that is, C is parameterized by  $\mathbf{r}(t) = (x(t), y(t), z(t))$  and  $\mathbf{r}(t_0) = (x(t_0), y(t_0), z(t_0)) = (x_0, y_0, z_0)$ . Since C lies on S, we know

$$F(x(t), y(t), z(t)) = k.$$
 (1)

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use the Chain Rule to differentiate both sides of equation (1) as follows:

$$\frac{\partial F}{\partial x}\frac{\mathrm{d}x}{\mathrm{d}t} + \frac{\partial F}{\partial y}\frac{\mathrm{d}y}{\mathrm{d}t} + \frac{\partial F}{\partial z}\frac{\mathrm{d}z}{\mathrm{d}t} = 0 \Rightarrow \nabla F \cdot \mathbf{r}'(t) = 0.$$

In particular, when  $t = t_0$ , we have  $\nabla F(x_0.y_0, z_0) \cdot \mathbf{r}'(t_0) = 0$ 

The gradient vector at P,  $\nabla F(x_0, y_0, z_0)$ , is perpendicular to the tangent vector  $\mathbf{r}'(0)$  to any curve C on S that passes through P.

**Definition 7** (page 954). If  $\nabla F(x_0, y_0, z_0) \neq \mathbf{0}$ , it is therefore natural to define the tangent plane to the level surface F(x, y, z) = k at P (等位面的切平面) as the plane that passes through P and has normal vector  $\nabla F(x_0, y_0, z_0)$ . The equation is

$$F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0.$$
(2)

□ 計算等位面的切平面,梯度即為切平面的法向量。

**Definition 8** (page 954). The normal line (法線) to S at P is the line passing through P and perpendicular to the tangent plane. The direction of the normal line is the gradient vector  $\nabla F(x_0, y_0, z_0)$ , and so its symmetric equations are

$$\frac{x - x_0}{F_x(x_0, y_0, z_0)} = \frac{y - y_0}{F_y(x_0, y_0, z_0)} = \frac{z - z_0}{F_z(x_0, y_0, z_0)}.$$
(3)

□ 若曲面可表示為函數的圖形 z = f(x, y), 可想成 F(x, y, z) = z - f(x, y) = 0。

**Example 9** (page 941). Find the equations of the tangent plane and normal line at P(-2, 1, 3) to the ellipsoid  $\frac{x^2}{4} + y^2 + \frac{z^2}{9} = 3$ .

#### Solution.

## Significance of the Gradient Vector, page 955

Consider a function of two variables f(x, y).

- (1) The gradient vector  $\nabla f$  is orthogonal to the level curve f(x, y) = k.
- (2) The gradient vector  $\nabla f$  gives the direction of fastest increases of f.



Figure 2: The gradient vector is orthogonal to the level curve.

Consider a function of three variables F(x, y, z).

- (1) The gradient vector  $\nabla F$  is orthogonal to the level surface F(x, y, z) = k.
- (2) The gradient vector  $\nabla F$  gives the direction of fastest increases of F.



Figure 3: The gradient vector is orthogonal to the level surface.

## Intersection of Two Surfaces

Suppose  $S_1$  and  $S_2$  are two surfaces determined by two equations F(x, y, z) = 0 and G(x, y, z) = 0, respectively. The intersection of two surfaces is a space curve called C. Suppose that  $\mathbf{r}(t)$  is a parametric equation of the space curve C and  $\mathbf{r}(t_0) = P$ , then  $\mathbf{r}'(t_0)$  is parallel to  $\nabla F(p) \times \nabla G(p)$ .



Figure 4: Intersection of two surfaces.

**Example 10.** Find the parametric equation of the tangent line to the curve of intersection of the surfaces  $x^2 + 2y^2 + z^2 = 4$  and  $x^2 + y^2 - z^2 = 1$  at the point (1, 1, 1).

#### Solution.