## 14．6 Directional Derivatives and the Gradient Vec－ tor，page 946

## Directional Derivatives，page 946

Definition 1 （page 947）．The directional derivative（方向導數）of $f(x, y)$ at $\left(x_{0}, y_{0}\right)$ in the direction of a unit vector $\mathbf{u}=(a, b)$ is

$$
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

if this limit exists．


Figure 1：Directional derivative．$\mathbf{u}$ 必須是單位向量；有時候只告知方向，必須先把向量「單位化」後再計算方向導數。
Theorem 2 （page 948）．If $f$ is a differentiable function of $x$ and $y$ ，then $f$ has a directional derivative in the direction of any unit vector $\mathbf{u}=(a, b)$ and

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) a+f_{y}(x, y) b=\left(f_{x}(x, y), f_{y}(x, y)\right) \cdot(a, b) .
$$

Proof．Define $g(h)=f(x(h), y(h))=f\left(x_{0}+h a, y_{0}+h b\right)$ ，then by the definition of a directional derivative and the Chain Rule，we have

$$
\begin{aligned}
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right) & =g^{\prime}(0)=\left.\left[\frac{\partial f}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} h}+\frac{\partial f}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} h}\right]\right|_{h=0} \\
& =f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b=\left(f_{x}\left(x_{0}, y_{0}\right), f_{y}\left(x_{0}, y_{0}\right)\right) \cdot(a, b) .
\end{aligned}
$$

If the unit vector $\mathbf{u}$ makes an angle $\theta$ with the positive $x$－axis，then we can write $\mathbf{u}=(\cos \theta, \sin \theta)$ and the directional derivative becomes

$$
D_{\mathbf{u}} f(x, y)=f_{x}(x, y) \cos \theta+f_{y}(x, y) \sin \theta=\left(f_{x}(x, y), f_{y}(x, y)\right) \cdot(\cos \theta, \sin \theta) .
$$

## The Gradient Vector，page 949

Definition 3 （page 950）．If $f$ is a function of two variables $x$ and $y$ ，then the gradient（梯度）of $f$ is the vector function $\nabla f$ or $\operatorname{grad} f$ defined by

$$
\nabla f(x, y)=\operatorname{grad} f(x, y) \stackrel{\text { def. }}{=}\left(f_{x}(x, y), f_{y}(x, y)\right)=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j} .
$$

Theorem 4 （page 950）．If $f$ is a differentiable function of $x$ and $y$ ，then $f$ has a directional derivative in the direction of any unit vector $\mathbf{u}=(a, b)$ and

$$
D_{\mathbf{u}} f(x, y)=\nabla f(x, y) \cdot \mathbf{u} .
$$方向導數爲「梯度向量」與「單位向量」內積。函數 $f(x, y)$ 的梯度向量 $\nabla f=\left(f_{x}, f_{y}\right)$ 是在 $x y$－平面上。

## Maximizing the Directional Derivative，page 952

Theorem 5 （page 952）．Suppose $f$ is a differentiable function of two variables．The maximum value of the directional derivative $D_{\mathbf{u}} f(x, y)$ is $|\nabla f(x, y)|$ and it occurs when $\mathbf{u}$ has the same direction as the gradient vector $\nabla f(x, y)$ ．

Proof．Since $|\mathbf{u}|=1$ ，we have

$$
D_{\mathbf{u}} f=\nabla f \cdot \mathbf{u}=|\nabla f||\mathbf{u}| \cos \theta=|\nabla f| \cos \theta
$$

where $\theta$ is the angle between $\nabla f$ and $\mathbf{u}$ ．The maximum value of $\cos \theta$ is 1 and this occurs when $\theta=0$ ．Therefore the maximum value of $D_{\mathbf{u}} f$ is $\nabla f$ when $\mathbf{u}$ is the same direction as $\nabla f$ ．柯西不等式（Cauchy inequality） $\mathbf{u} \cdot \mathbf{v} \leq\|\mathbf{u}\|\|\mathbf{v}\|$ 。
Example 6．Let $f(x, y)=2 x^{2}-x y+y^{2}-2 x+y$ ．
（a）Find the directional derivative $D_{\mathbf{u}} f(p)$ ，where $p=(0,0)$ and $\mathbf{u}=\left(\frac{\sqrt{3}}{2}, \frac{1}{2}\right)$ ．
（b）Find the unit vector $\mathbf{v}$ that the directional derivative $D_{\mathbf{v}} f(p)$ is maximal．

## Solution．

## Functions of Three Variables，page 950

Using vector notation，we can write the directional derivative in the compact form：

$$
D_{\mathbf{u}} f\left(\mathbf{x}_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(\mathbf{x}_{0}+h \mathbf{u}\right)-f\left(\mathbf{x}_{0}\right)}{h}=\nabla f\left(\mathbf{x}_{0}\right) \cdot \mathbf{u} .
$$

where $\mathbf{x}_{0}=\left(x_{0}, y_{0}\right)$ if $n=2$ and $\mathbf{x}_{0}=\left(x_{0}, y_{0}, z_{0}\right)$ if $n=3$ ．

## Tangent Planes to Level Surfaces，page 954

Suppose $S$ is a level surface with equation $F(x, y, z)=k$ ，and let $P\left(x_{0}, y_{0}, z_{0}\right)$ be a point on $S$ ．Let $C$ be any curve that lies on the surface $S$ and passes through the point $P$ ，that is，$C$ is parameterized by $\mathbf{r}(t)=(x(t), y(t), z(t))$ and $\mathbf{r}\left(t_{0}\right)=$ $\left(x\left(t_{0}\right), y\left(t_{0}\right), z\left(t_{0}\right)\right)=\left(x_{0}, y_{0}, z_{0}\right)$ ．Since $C$ lies on $S$ ，we know

$$
\begin{equation*}
F(x(t), y(t), z(t))=k . \tag{1}
\end{equation*}
$$

If $x, y$ ，and $z$ are differentiable functions of $t$ and $F$ is also differentiable，then we can use the Chain Rule to differentiate both sides of equation（1）as follows：

$$
\frac{\partial F}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial F}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}+\frac{\partial F}{\partial z} \frac{\mathrm{~d} z}{\mathrm{~d} t}=0 \Rightarrow \nabla F \cdot \mathbf{r}^{\prime}(t)=0 .
$$

In particular，when $t=t_{0}$ ，we have $\nabla F\left(x_{0} . y_{0}, z_{0}\right) \cdot \mathbf{r}^{\prime}\left(t_{0}\right)=0$
The gradient vector at $P, \nabla F\left(x_{0}, y_{0}, z_{0}\right)$ ，is perpendicular to the tangent vector $\mathbf{r}^{\prime}(0)$ to any curve $C$ on $S$ that passes through $P$ ．

Definition 7 （page 954）．If $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \neq \mathbf{0}$ ，it is therefore natural to define the tangent plane to the level surface $F(x, y, z)=k$ at $P$（等位面的切平面）as the plane that passes through $P$ and has normal vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ ．The equation is

$$
\begin{equation*}
F_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+F_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+F_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right)=0 . \tag{2}
\end{equation*}
$$

## 計算等位面的切平面，梯度即爲切平面的法向量。

Definition 8 （page 954）．The normal line（法線）to $S$ at $P$ is the line passing through $P$ and perpendicular to the tangent plane．The direction of the normal line is the gradient vector $\nabla F\left(x_{0}, y_{0}, z_{0}\right)$ ，and so its symmetric equations are

$$
\begin{equation*}
\frac{x-x_{0}}{F_{x}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{y-y_{0}}{F_{y}\left(x_{0}, y_{0}, z_{0}\right)}=\frac{z-z_{0}}{F_{z}\left(x_{0}, y_{0}, z_{0}\right)} . \tag{3}
\end{equation*}
$$

$\square$ 若曲面可表示爲函數的圖形 $z=f(x, y)$ ，可想成 $F(x, y, z)=z-f(x, y)=0$ 。

Example 9 (page 941). Find the equations of the tangent plane and normal line at $P(-2,1,3)$ to the ellipsoid $\frac{x^{2}}{4}+y^{2}+\frac{z^{2}}{9}=3$.

## Solution.

## Significance of the Gradient Vector, page 955

Consider a function of two variables $f(x, y)$.
(1) The gradient vector $\nabla f$ is orthogonal to the level curve $f(x, y)=k$.
(2) The gradient vector $\nabla f$ gives the direction of fastest increases of $f$.


curve of steepest ascent

Figure 2: The gradient vector is orthogonal to the level curve.
Consider a function of three variables $F(x, y, z)$.
(1) The gradient vector $\nabla F$ is orthogonal to the level surface $F(x, y, z)=k$.
(2) The gradient vector $\nabla F$ gives the direction of fastest increases of $F$.


Figure 3: The gradient vector is orthogonal to the level surface.

## Intersection of Two Surfaces

Suppose $S_{1}$ and $S_{2}$ are two surfaces determined by two equations $F(x, y, z)=0$ and $G(x, y, z)=0$, respectively. The intersection of two surfaces is a space curve called $C$. Suppose that $\mathbf{r}(t)$ is a parametric equation of the space curve $C$ and $\mathbf{r}\left(t_{0}\right)=P$, then $\mathbf{r}^{\prime}\left(t_{0}\right)$ is parallel to $\nabla F(p) \times \nabla G(p)$.


Figure 4: Intersection of two surfaces.

Example 10. Find the parametric equation of the tangent line to the curve of intersection of the surfaces $x^{2}+2 y^{2}+z^{2}=4$ and $x^{2}+y^{2}-z^{2}=1$ at the point $(1,1,1)$.

## Solution.

