14．5 The Chain Rule，page 937

The Chain Rule，Case 1 （page 938）．Suppose that $z=z(x, y)$ is a differentiable function of x and y ，where $x=x(t)$ and $y=y(t)$ are both differentiable function of t ．Then z is a differentiable function of t and

$$
\frac{\mathrm{d} z}{\mathrm{~d} t}=\frac{\partial z}{\partial x} \frac{\mathrm{~d} x}{\mathrm{~d} t}+\frac{\partial z}{\partial y} \frac{\mathrm{~d} y}{\mathrm{~d} t}
$$

$\square z$ 和 x, y 與 t 的關係式爲 $z(t)=z(x(t), y(t))$ 。
Example 1 （page 938）．If $z=x^{2} y+3 x y^{4}$ ，where $x=\sin 2 t$ and $y=\cos t$ ，find $\frac{\mathrm{d} z}{\mathrm{~d} t}$ when $t=0$ ．

Solution．

Example 2．Find the second derivative $\frac{\mathrm{d}^{2} z}{\mathrm{~d} t^{2}}$ ．

Solution．

The Chain Rule，Case 2 （page 939）．Suppose that $z=z(x, y)$ is a differentiable function of x and y ，where $x=x(s, t)$ and $y=y(s, t)$ are differentiable functions of s and t ．Then

$$
\frac{\partial z}{\partial s}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial s}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial s}, \quad \frac{\partial z}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \frac{\partial y}{\partial t} .
$$$z$ 與 x, y 和 x, t 的關係式爲 $z(s, t)=z(x(s, t), y(s, t))$ 。

Case 2 of the Chain Rule contains three types of variables：s and t are indepen－ dent variables，x and y are intermediate variables，and z is the dependent variable．

Example 3．If $z=\mathrm{e}^{x} \sin y$ ，where $x=s t^{2}$ and $y=s^{2} t$ ．Find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ ．
Solution．

Example 4．Let $z=y+f\left(x^{2}-y^{2}\right)$ and f be a differentiable function of single variable．Find $y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}$ ．

Solution．

The Chain Rule，General Version（page 940）．Suppose that u is a differentiable function of the n variables $x_{1}, x_{2}, \ldots, x_{n}$ ，and each x_{i} is a differentiable function of the m variables $t_{1}, t_{2}, \ldots, t_{m}$ ．Then u is a function of $t_{1}, t_{2}, \ldots, t_{m}$ and

$$
\frac{\partial u}{\partial t_{i}}=\frac{\partial u}{\partial x_{1}} \frac{\partial x_{1}}{\partial t_{i}}+\frac{\partial u}{\partial x_{2}} \frac{\partial x_{2}}{\partial t_{i}}+\cdots+\frac{\partial u}{\partial x_{n}} \frac{\partial x_{n}}{\partial t_{i}}=\sum_{j=1}^{n} \frac{\partial u}{\partial x_{j}} \frac{\partial x_{j}}{\partial t_{i}} .
$$以上鏈鎖律爲合成函數的求導法則。

Coordinates Changes

In \mathbb{R}^{2} ，denote (x, y) as the Cartesian coordinates and (r, θ) as the polar coordinates． We know relations between these coordinates are

$$
\left\{\begin{array} { l }
{ x = r \operatorname { c o s } \theta } \\
{ y = r \operatorname { s i n } \theta . }
\end{array} \quad \left\{\begin{array}{l}
r^{2}=x^{2}+y^{2} \\
\tan \theta=\frac{y}{x}
\end{array} .\right.\right.
$$

So we know $x=x(r, \theta), y=y(r, \theta)$ and $r=r(x, y), \theta=\theta(x, y)$ ，and hence

$$
x=x(r(x, y), \theta(x, y)) \quad \text { and } \quad y=y(r(x, y), \theta(x, y))
$$

Since x and y are independent variables，we have

So partial derivatives of coordinates changes form inverse matrices．Now we check this relation by computing partial derivatives directly．單變數的情形 $\frac{\mathrm{d} y}{\mathrm{~d} x} \cdot \frac{\mathrm{~d} x}{\mathrm{~d} y}=1$ ；多變數的情形：矩陣相乘爲單位矩陣。有時候坐標變換關係式很複雜（隱函數），不易求偏導數，計算反矩陣比較快。

Example 5．Consider $z=f(x, y)$ ，where all the second partial derivatives of f are continuous．Let $x=r \cos \theta$ and $y=r \sin \theta$ ．
（a）Express $\frac{\partial^{2} r}{\partial x^{2}}$ and $\frac{\partial^{2} \theta}{\partial x^{2}}$ in terms of r and θ ．
（b）Express $f_{x x}$ in terms of $r, \theta, f_{r}, f_{\theta}, f_{r r}, f_{r \theta}$ ，and $f_{\theta \theta}$ ．

Solution．

Implicit Differentiation（隱函數微分）

The Chain Rule can be used to give a more complete description of the process of implicit differentiation．Suppose that an equation of the form $F(x, y)=0$ defines y implicitly as a differentiable function of x ，that is，$y=y(x)$ ，where $F(x, y(x))=0$ for all x in the domain of y ．If F is differentiable，we can apply the Chain Rule to differentiate both side of the equation $F(x, y(x))=0$ with respect to x to get

$$
\Rightarrow
$$

Implicit Function Theorem（page 942）．If $F(x, y)$ is defined on a disk containing $\left(x_{0}, y_{0}\right)$ ，where $F\left(x_{0}, y_{0}\right)=0, F_{y}\left(x_{0}, y_{0}\right) \neq 0$ ，and F_{x} and F_{y} are continuous on the disk，then the equation $F(x, y)=0$ defines y as a function of x near the point $\left(x_{0}, y_{0}\right)$ and the derivative of this function is $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{F_{x}}{F_{y}}$ ．

Exercise (page 946). If $f(x, y)=0$ define y as a function of x, show that

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=-\frac{f_{x x} f_{y}^{2}-2 f_{x y} f_{x} f_{y}+f_{y y} f_{x}^{2}}{f_{y}^{3}} .
$$

Now we suppose that z is given implicitly as a function $z=z(x, y)$ by an equation of the form $F(x, y, z)=0$. This means that $F(x, y, z(x, y))=0$ for all (x, y) in the domain of z. If F and z are differentiable, then we can use the Chain Rule to differentiable the equation $F(x, y, z(x, y))=0$ as follows:

If $\frac{\partial F}{\partial z} \neq 0$, we solve $\frac{\partial z}{\partial x}$ and obtain

$$
\frac{\partial z}{\partial x}=\quad \frac{\partial z}{\partial y}=
$$

Implicit Function Theorem (page 943). If $F(x, y)$ is defined within a sphere containing $\left(x_{0}, y_{0}, z_{0}\right)$, where $F\left(x_{0}, y_{0}\right)=0, F_{z}\left(x_{0}, y_{0}, z_{0}\right) \neq 0$, and F_{x}, F_{y} and F_{z} are continuous inside the sphere, then the equation $F(x, y, z)=0$ defines z as a function of x and y near the point $\left(x_{0}, y_{0}, z_{0}\right)$ and the partial derivatives of this function are $\frac{\partial z}{\partial x}=-\frac{F_{x}}{F_{z}}$ and $\frac{\partial z}{\partial y}=-\frac{F_{y}}{F_{z}}$.

Example 6 (page 943). Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $F(x, y, z)=x^{3}+y^{3}+z^{3}+6 x y z-1=0$.

Solution.

