
14.3 Partial Derivative, page 911

Definition 1 (page 913). If f is a function of two variables x and y, suppose we

let only x vary while keeping y fixed, say y = y0, then g(x) = f(x, y0) is a function

of a single variable x. If g(x) has a derivative at x = x0, then we call it the partial

derivative (偏導數) of f with respect to x at (x0, y0) and denote it by fx(x0, y0). Thus

fx(x0, y0) = g′(x0) = lim
h→0

g(x0 + h)− g(x0)

h
= lim

h→0

f(x0 + h, y0)− f(x0, y0)

h
.

Similarly, the partial derivative (偏導數) of f with respect to y at (x0, y0) and denote

it by fy(x0, y0), is obtained by keeping x fixed, say x = x0, and finding the ordinary

derivative at y = y0 of the function g̃(y) = f(x0, y):

fy(x0, y0) = g̃′(y0) = lim
h→0

g̃(y0 + h)− g̃(y0)

h
= lim

h→0

f(x0, y0 + h)− f(x0, y0)

h
.

Definition 2 (page 913). If f is a function of two variables, its partial derivatives

(偏導函數) are the functions fx and fy defined by

fx(x, y) = lim
h→0

f(x+ h, y)− f(x, y)

h
,

fy(x, y) = lim
h→0

f(x, y + h)− f(x, y)

h
.

Notations for Partial Derivatives. If z = f(x, y), we write

fx(x, y) = fx =
∂f

∂x
=

∂

∂x
f(x, y) =

∂z

∂x
= f1 = Dxf = D1f,

fy(x, y) = fy =
∂f

∂y
=

∂

∂y
f(x, y) =

∂z

∂y
= f2 = Dyf = D2f.

Rule for Finding Partial Derivative of z = f(x, y).

(1) To find fx, regard y as a constant and differentiate f(x, y) with respect to x.

(2) To find fy, regard x as a constant and differentiate f(x, y) with respect to y.

� 對某變數求偏導, 固定其他變數, 使其為單變數函數, 再計算導數。

Example 3 (page 914). If f(x, y) = x3 + x2y3 − 2y2, then

(a) fx(x, y) =

fx(2, 1) =

(b) fy(x, y) =

fy(2, 1) =
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Interpretations of Partial Derivatives, page 915

The partial derivatives fx(x0, y0) and fy(x0, y0) can be interpreted geometrically as

the slopes of the tangent lines at P (x0, y0, f(x0, y0)) to the trace C1 and C2 of the

surface S in the planes y = y0 and x = x0.
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Figure 1: Geometric meaning of partial derivatives.

Example 4 (page 917). If f(x, y) = sin
(

x
1+y

)

, calculate ∂f

∂x
and ∂f

∂y
.

Solution.

Example 5 (page 917). Find ∂z
∂x

and ∂z
∂y

if z is defined implicitly as a function of x

and y by the equation x3 + y3 + z3 + 6xyz = 1.

Solution.

Exercise (page 927). If f(x, y) =
x esin(x

2y)

(x2 + y2)
3

2

, find fx(1, 0).

Functions of More Than Two Variables, page 917

If z = f(x1, x2, . . . , xn) is a function of n variables, its partial derivative with respect

to the i-th variable xi is

∂z

∂xi

= lim
h→0

f(x1, . . . , xi−1, xi + h, xi+1, . . . , xn)− f(x1, . . . , xi, . . . , xn)

h
.

We also write
∂z

∂xi

=
∂f

∂xi

= fxi
= fi = Dif.
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Higher Derivatives, page 918

If f is a function of two variables, then its partial derivatives fx and fy are also func-

tions of two variables, so we can consider their partial derivatives (fx)x, (fx)y, (fy)x,

and (fy)y, which are called the second partial derivatives (二次偏導數) of f . If

z = f(x, y), we use the following notation:

(fx)x = fxx = f11 =
∂

∂x

(

∂f

∂x

)

=
∂2f

∂x2
=

∂2z

∂x2
,

(fx)y = fxy = f12 =
∂

∂y

(

∂f

∂x

)

=
∂2f

∂y∂x
=

∂2z

∂y∂x
,

(fy)x = fyx = f21 =
∂

∂x

(

∂f

∂y

)

=
∂2f

∂x∂y
=

∂2z

∂x∂y
,

(fy)y = fyy = f22 =
∂

∂y

(

∂f

∂y

)

=
∂2f

∂y2
=

∂2z

∂y2
.

� 寫成下標的順序 fxy 和寫成
∂2f

∂y∂x
的順序及其代表之意義需注意。

Exercise. Let r(x, y) =
√

x2 + y2. For (x, y) 6= (0, 0), compute rx, ry, rxx, rxy, ryx,

and ryy.

Clairaut’s Theorem (page 919). Suppose f is defined on a disk D that contains

the point (x0, y0). If the functions fxy and fyx are both continuous on D, then

fxy(x0, y0) = fyx(x0, y0).

� 二次偏導函數 fxy 與 fyx 必須都是 「連續函數」, 偏導順序交換才會相等。

Exercise. Let f(x, y) =
x3 − xy2

x2 + y2
.

(a) Determine the value f(0, 0) such that f(x, y) is continuous at (0, 0).

(b) Find fx(x, y), fx(x, y), fx(0, 0) and fy(0, 0).

(c) Compute fxy(0, 0) and fyx(0, 0).

Partial Differential Equations, page 920

Partial derivatives occur in partial differential equations (偏微分方程) that express

certain physical laws. For instance,

(a) u = u(x, y),∆u ≡ ∂2u
∂x2 +

∂2y

∂y2
= 0: Laplace’s equation (拉普拉斯方程).

(b) u = u(t, x), ∂u
∂t

= ∂2u
∂x2 : heat equation. (熱傳導方程).

(c) u = u(t, x), ∂
2u
∂t2

= ∂2u
∂x2 : wave equation (波動方程)
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Example 6 (page 927). Let f(x, y) =

{

x3y−xy3

x2+y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
.

(a) Find fx(x, y) and fy(x, y) when (x, y) 6= (0, 0).

(b) Find fx(0, 0) and fy(0, 0).

(c) Find fxy(x, y) and fyx(x, y) when (x, y) 6= (0, 0).

(d) Find fxy(0, 0) and fyx(0, 0).

(e) Do the results of (c) and (d) contradict Clairaut’s Theorem?

Solution.

(a) Direct computation gives

fx(x, y) =
(x2 + y2)(3x2y − y3)− (x3y − xy3)(2x)

(x2 + y2)2
=

x4y + 4x2y3 − y5

(x2 + y2)2

fy(x, y) = .

(b) By definition, we have

fx(0, 0) =

fy(0, 0) =

(c) Direct computation gives

fxy(x, y) =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

fyx(x, y) =
x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3
.

(d) By definition, we have

fxy(0, 0) =

fyx(0, 0) =

(e) Results of (c) and (d) don’t contradict to Clairaut’s Theorem because both

fxy(x, y) and fyx(x, y) are not continuous at (0, 0). We cant take path C1(x) =

(x, 0), x 6= 0 and C2(y) = (0, y), y 6= 0 to get fxy(x, y)|C1(x) = fyx(x, y)|C1(x) ≡ 1

and fxy(x, y)|C2(y) = fyx(x, y)|C2(y) ≡ −1. That is, lim
(x,y)→(0,0)

fxy(x, y) and

lim
(x,y)→(0,0)

fxy(x, y) do not exist.

� 分段函數求偏導, 用定義計算。 由 (d) 知, 二次偏導函數順序交換不見得相等。
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