14.3 Partial Derivative, page 911

Definition 1 (page 913). If f is a function of two variables x and y, suppose we let only x vary while keeping y fixed, say $y = y_0$, then $g(x) = f(x, y_0)$ is a function of a single variable x. If g(x) has a derivative at $x = x_0$, then we call it the *partial derivative* (偏導數) of f with respect to x at (x_0, y_0) and denote it by $f_x(x_0, y_0)$. Thus

$$f_x(x_0, y_0) = g'(x_0) = \lim_{h \to 0} \frac{g(x_0 + h) - g(x_0)}{h} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h}.$$

Similarly, the partial derivative (偏導數) of f with respect to y at (x_0, y_0) and denote it by $f_y(x_0, y_0)$, is obtained by keeping x fixed, say $x = x_0$, and finding the ordinary derivative at $y = y_0$ of the function $\tilde{g}(y) = f(x_0, y)$:

$$f_y(x_0, y_0) = \tilde{g}'(y_0) = \lim_{h \to 0} \frac{\tilde{g}(y_0 + h) - \tilde{g}(y_0)}{h} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h}.$$

Definition 2 (page 913). If f is a function of two variables, its *partial derivatives* (偏導函數) are the functions f_x and f_y defined by

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h},$$

$$f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}.$$

Notations for Partial Derivatives. If z = f(x, y), we write

$$f_x(x,y) = f_x = \frac{\partial f}{\partial x} = \frac{\partial}{\partial x}f(x,y) = \frac{\partial z}{\partial x} = f_1 = D_x f = D_1 f,$$

$$f_y(x,y) = f_y = \frac{\partial f}{\partial y} = \frac{\partial}{\partial y}f(x,y) = \frac{\partial z}{\partial y} = f_2 = D_y f = D_2 f.$$

Rule for Finding Partial Derivative of z = f(x, y).

(1) To find f_x , regard y as a constant and differentiate f(x, y) with respect to x.

(2) To find f_y , regard x as a constant and differentiate f(x, y) with respect to y.

□ 對某變數求偏導, 固定其他變數, 使其爲單變數函數, 再計算導數。

Example 3 (page 914). If $f(x, y) = x^3 + x^2y^3 - 2y^2$, then

- (a) $f_x(x,y) =$
 - $f_x(2,1) =$
- (b) $f_y(x,y) =$
 - $f_y(2,1) =$

Interpretations of Partial Derivatives, page 915

The partial derivatives $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ can be interpreted geometrically as the slopes of the tangent lines at $P(x_0, y_0, f(x_0, y_0))$ to the trace C_1 and C_2 of the surface S in the planes $y = y_0$ and $x = x_0$.

Figure 1: Geometric meaning of partial derivatives.

Example 4 (page 917). If $f(x, y) = \sin\left(\frac{x}{1+y}\right)$, calculate $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$. Solution.

Example 5 (page 917). Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if z is defined implicitly as a function of x and y by the equation $x^3 + y^3 + z^3 + 6xyz = 1$.

Solution.

Exercise (page 927). If
$$f(x,y) = \frac{x e^{\sin(x^2y)}}{(x^2 + y^2)^{\frac{3}{2}}}$$
, find $f_x(1,0)$

Functions of More Than Two Variables, page 917

If $z = f(x_1, x_2, ..., x_n)$ is a function of *n* variables, its partial derivative with respect to the *i*-th variable x_i is

$$\frac{\partial z}{\partial x_i} = \lim_{h \to 0} \frac{f(x_1, \dots, x_{i-1}, x_i + h, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_i, \dots, x_n)}{h}.$$

We also write

$$\frac{\partial z}{\partial x_i} = \frac{\partial f}{\partial x_i} = f_{x_i} = f_i = D_i f$$

Higher Derivatives, page 918

If f is a function of two variables, then its partial derivatives f_x and f_y are also functions of two variables, so we can consider their partial derivatives $(f_x)_x, (f_x)_y, (f_y)_x$, and $(f_y)_y$, which are called the *second partial derivatives* (二次偏導數) of f. If z = f(x, y), we use the following notation:

$$(f_x)_x = f_{xx} = f_{11} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x}\right) = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 z}{\partial x^2},$$

$$(f_x)_y = f_{xy} = f_{12} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}\right) = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 z}{\partial y \partial x},$$

$$(f_y)_x = f_{yx} = f_{21} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y}\right) = \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 z}{\partial x \partial y},$$

$$(f_y)_y = f_{yy} = f_{22} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y}\right) = \frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 z}{\partial y^2}.$$

□ 寫成下標的順序 f_{xy} 和寫成 $\frac{\partial^2 f}{\partial u \partial x}$ 的順序及其代表之意義需注意。

Exercise. Let $r(x, y) = \sqrt{x^2 + y^2}$. For $(x, y) \neq (0, 0)$, compute $r_x, r_y, r_{xx}, r_{xy}, r_{yx}$, and r_{yy} .

Clairaut's Theorem (page 919). Suppose f is defined on a disk D that contains the point (x_0, y_0) . If the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(x_0, y_0) = f_{yx}(x_0, y_0).$$

□ 二次偏導函數 f_{xy} 與 f_{yx} 必須都是「連續函數」, 偏導順序交換才會相等。

Exercise. Let $f(x,y) = \frac{x^3 - xy^2}{x^2 + y^2}$.

- (a) Determine the value f(0,0) such that f(x,y) is continuous at (0,0).
- (b) Find $f_x(x, y), f_x(x, y), f_x(0, 0)$ and $f_y(0, 0)$.
- (c) Compute $f_{xy}(0,0)$ and $f_{yx}(0,0)$.

Partial Differential Equations, page 920

Partial derivatives occur in *partial differential equations* (偏微分方程) that express certain physical laws. For instance,

- (a) $u = u(x, y), \Delta u \equiv \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 y}{\partial y^2} = 0$: Laplace's equation (拉普拉斯方程).
- (b) $u = u(t, x), \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}$: heat equation. (熱傳導方程).
- (c) $u = u(t, x), \frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$: wave equation (波動方程)

Example 6 (page 927). Let $f(x, y) = \begin{cases} \frac{x^3y - xy^3}{x^2 + y^2} & \text{if } (x, y) \neq (0, 0) \\ 0 & \text{if } (x, y) = (0, 0) \end{cases}$.

- (a) Find $f_x(x, y)$ and $f_y(x, y)$ when $(x, y) \neq (0, 0)$.
- (b) Find $f_x(0,0)$ and $f_y(0,0)$.
- (c) Find $f_{xy}(x, y)$ and $f_{yx}(x, y)$ when $(x, y) \neq (0, 0)$.
- (d) Find $f_{xy}(0,0)$ and $f_{yx}(0,0)$.
- (e) Do the results of (c) and (d) contradict Clairaut's Theorem?

Solution.

(a) Direct computation gives

$$f_x(x,y) = \frac{(x^2 + y^2)(3x^2y - y^3) - (x^3y - xy^3)(2x)}{(x^2 + y^2)^2} = \frac{x^4y + 4x^2y^3 - y^5}{(x^2 + y^2)^2}$$
$$f_y(x,y) =$$

(b) By definition, we have

$$f_x(0,0) =$$
$$f_y(0,0) =$$

(c) Direct computation gives

$$f_{xy}(x,y) = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}$$
$$f_{yx}(x,y) = \frac{x^6 + 9x^4y^2 - 9x^2y^4 - y^6}{(x^2 + y^2)^3}.$$

(d) By definition, we have

$$f_{xy}(0,0) =$$

$$f_{yx}(0,0) =$$

(e) Results of (c) and (d) don't contradict to Clairaut's Theorem because both $f_{xy}(x, y)$ and $f_{yx}(x, y)$ are not continuous at (0, 0). We cant take path $C_1(x) = (x, 0), x \neq 0$ and $C_2(y) = (0, y), y \neq 0$ to get $f_{xy}(x, y)|_{C_1(x)} = f_{yx}(x, y)|_{C_1(x)} \equiv 1$ and $f_{xy}(x, y)|_{C_2(y)} = f_{yx}(x, y)|_{C_2(y)} \equiv -1$. That is, $\lim_{(x,y)\to(0,0)} f_{xy}(x, y)$ and $\lim_{(x,y)\to(0,0)} f_{xy}(x, y)$ do not exist.

□ 分段函數求偏導, 用定義計算。由 (d) 知, 二次偏導函數順序交換不見得相等。