Chapter 14 Partial Derivatives

14.1 Functions of Several Variables, page 888

Functions of Two Variable, page 888

Definition 1 (page 888). A function f of two variables (雙變數函數) is a rule that assigns to each ordered pair of real numbers (x, y) in a set $D \subset \mathbb{R}^2$ a unique real number denoted by f(x, y). The set D is the domain (定義域) of f and its range (值 域) is the set of values that f takes on, that is, $\{f(x, y) | (x, y) \in D\}$.

We often write z = f(x, y) to make explicit the value taken on by f at the general point (x, y). The variables x and y are *independent variables* (獨立變數) and z is the *dependent variable* (依賴變數).

Example 2 (page 888–889).

- (a) Function: $f(x,y) = \frac{\sqrt{x+y+1}}{x-1}$. Domain: $D = \{(x,y)|x+y+1 \ge 0, x \ne 1\}$.
- (b) Function: $g(x, y) = x \ln(y^2 x)$. Domain: $D = \{(x, y) | x < y^2\}$.

Figure 1: (a) Domain of $f(x, y) = \frac{\sqrt{x+y+1}}{x-1}$. (b) Domain of $g(x, y) = x \ln(y^2 - x)$.

Exercise. Find and sketch the domain of the function $f(x, y) = \sin^{-1}(x^2 + y^2 - 2)$.

Graphs, page 890

One way of visualizing the behavior of a function of two variables is to consider its graph.

Definition 3 (page 890). If f is a function of two variables with domain D, then the graph of f (圖形) is the set of all points $(x, y, z) \in \mathbb{R}^3$ such that z = f(x, y) and (x, y) is in D.

§14.1-1

The graph of a function f of two variables is a surface S with equation z = f(x, y). We can visualize the graph S of f as lying directly above or below its domain D in the xy-plane.

Figure 2: The graph of $f(x, y) = \sin xy, 0 \le x \le 4, 0 \le y \le 4$ and its level curves.

Level Curves, page 893

Another method for visualizing functions, borrowed from mapmakers, is a contour map on which points of constant elevation are joined to form *contour lines* (等高線、輪廓線), or *level curves* (等位線).

Definition 4 (page 893). The *level curves* of a function f of two variables are the curves with equations f(x, y) = k, where k is a constant (in the range of f).

The level curves f(x, y) = k are just the traces of the graph of f in the horizontal plane z = k projected down to the xy-plane. The surface is steep where the level curves are close together. It is somewhat flatter where they are farther apart. \Box 等高線、等壓線、等溫線。

Figure 3: Level curves of the function $f(x,y) = 5 - (x-3)^2 - (y-3)^2$.

Exercise (page 902). Match the function (a),(b),(c) with its graph (A),(B),(C) and its contour map (I), (II), (III). Give reasons for your choices.

Figure 4: Match functions, graphs, and contour maps.

Functions of Three or More Variables, page 89

A function of three variables (三變數函數), f, is a rule that assigns to each ordered triple (x, y, z) in a domain $D \subset \mathbb{R}^3$ a unique real number denoted by $f(x, y, z) \in \mathbb{R}$. For instance, the temperature T at a point on the surface of the earth depends on the longitude x and latitude y of the point and on the time, so we could write T = f(x, y, t).

In general, a function of n variables (n-變數函數) is a rule that assigns a number $z = f(x_1, x_2, ..., x_n)$ to an n-tuple $(x_1, x_2, ..., x_n)$ of real numbers. Sometimes are will use vector notation to write such functions more compactly: If $\mathbf{x} = (x_1, x_2, ..., x_n)$, we often write $f(\mathbf{x})$ in place of $f(x_1, x_2, ..., x_n)$.