Chapter 14 Partial Derivatives

14．1 Functions of Several Variables，page 888

Functions of Two Variable，page 888

Definition 1 （page 888）．A function f of two variables（雙變數函數）is a rule that assigns to each ordered pair of real numbers (x, y) in a set $D \subset \mathbb{R}^{2}$ a unique real number denoted by $f(x, y)$ ．The set D is the domain（定義域）of f and its range（值域）is the set of values that f takes on，that is，$\{f(x, y) \mid(x, y) \in D\}$ 。

We often write $z=f(x, y)$ to make explicit the value taken on by f at the general point (x, y) ．The variables x and y are independent variables（獨立變數）and z is the dependent variable（依賴變數）．

Example 2 （page 888－889）．
（a）Function：$f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$ ．Domain：$D=\{(x, y) \mid x+y+1 \geq 0, x \neq 1\}$ ．
（b）Function：$g(x, y)=x \ln \left(y^{2}-x\right)$ ．Domain：$D=\left\{(x, y) \mid x<y^{2}\right\}$ ．

（a）

（b）

Figure 1：（a）Domain of $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$ ．（b）Domain of $g(x, y)=x \ln \left(y^{2}-x\right)$ ．

Exercise．Find and sketch the domain of the function $f(x, y)=\sin ^{-1}\left(x^{2}+y^{2}-2\right)$ ．

Graphs，page 890

One way of visualizing the behavior of a function of two variables is to consider its graph．

Definition 3 （page 890）．If f is a function of two variables with domain D ，then the graph of f（圖形）is the set of all points $(x, y, z) \in \mathbb{R}^{3}$ such that $z=f(x, y)$ and (x, y) is in D ．

The graph of a function f of two variables is a surface S with equation $z=$ $f(x, y)$ ．We can visualize the graph S of f as lying directly above or below its domain D in the $x y$－plane．

Figure 2：The graph of $f(x, y)=\sin x y, 0 \leq x \leq 4,0 \leq y \leq 4$ and its level curves．

Level Curves，page 893

Another method for visualizing functions，borrowed from mapmakers，is a contour map on which points of constant elevation are joined to form contour lines（等高線，輪廓線），or level curves（等位線）．

Definition 4 （page 893）．The level curves of a function f of two variables are the curves with equations $f(x, y)=k$ ，where k is a constant（in the range of f ）．

The level curves $f(x, y)=k$ are just the traces of the graph of f in the horizontal plane $z=k$ projected down to the $x y$－plane．The surface is steep where the level curves are close together．It is somewhat flatter where they are farther apart．

等高線，等壓線，等溫線。

Figure 3：Level curves of the function $f(x, y)=5-(x-3)^{2}-(y-3)^{2}$ ．

Exercise（page 902）．Match the function（a），（b），（c）with its graph（A），（B），（C）and its contour map（I），（II），（III）．Give reasons for your choices．
（a）$f(x, y)=\sin x-\sin y$
（b）$g(x, y)=\frac{x-y}{1+x^{2}+y^{2}}$
（c）$h(x, y)=\mathrm{e}^{x} \cos y$ ．

Figure 4：Match functions，graphs，and contour maps．

Functions of Three or More Variables，page 89

A function of three variables（三變數函數），f ，is a rule that assigns to each ordered triple (x, y, z) in a domain $D \subset \mathbb{R}^{3}$ a unique real number denoted by $f(x, y, z) \in \mathbb{R}$ ． For instance，the temperature T at a point on the surface of the earth depends on the longitude x and latitude y of the point and on the time，so we could write $T=f(x, y, t)$ ．

In general，a function of n variables（ n－變數函數）is a rule that assigns a num－ ber $z=f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ to an n－tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of real numbers．Some－ times are will use vector notation to write such functions more compactly：If $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ ，we often write $f(\mathbf{x})$ in place of $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ ．

