13.3 Arc Length and Curvature (page 861)

Question. How do we know that two space curves are the same (congruent)?

Concept of a Curve

Definition 1 (page 861). Suppose that C'is a space curve given by a vector function
r(t)=ft)i+gt)j+h(t)k, a<t<b.
We say r(t) is a smooth parametrization (BRI EERRE) if
(a) r/(t) is continuous on [a, b]. (& f(t),g(t), h(t) € CMa,b])
(b) r'(t) #0 for all t € [a,b]. (& Vi€ [a,b], at least one of f'(t),¢'(t), ' (t) # 0)
The variable ¢ is called the parameter (2#() of the representation.
L) BMEFA MAERS] % 28] (ARG EHE) #oe =] (REREE).

Definition 2 (page 863). A space curve C' is called smooth curve (JE¥EHIER) if it

has a smooth parametrization.

A smooth curve has no sharp corners or cusps; when the tangent vector turns,

it does so continuously.

Definition 3 (page 862). A space curve C' can be smooth parametrized by more
than one vector function. We say all vector functions are parametrizations (B85
%) of the curve C'.

Example 4 (page 862). The twisted cubic ri(t) = (¢,t%,¢3),1 < t < 2 could also be

represented by the function ro(u) = (e*,e?*,e*),0 < u < In2, where ¢t = e

Example 5 (page 854). A plane curve can be thought as a special case of a space
curve. So we have many parametrizations to represent a unit circle 22+y? = 1,z = 0.
For example, ri(t) = (cost,sint,0),0 < t < 2w, or ro(u) = (cos2u,sin2u,0),0 <

u < 7, where t = 2u.

[ FreEEEs B2 AERR (regular curve) —FRAEHE AR (smooth curve),
U E—ihigaRL 28k, ¥ FBES gauge invariance, %/ F#E diffeomorphisms
[ s m 28k, CHMNERBR? B1%E FH] B TERI] £RAR?
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Arc Length as a Parameter, page 863
Definition 6 (page 863). Suppose that C' is a simple smooth curve given by
r(t)=f(t)i+gt)j+h(t)k, a<t<b.

We define its arc length function s (INFREKE) by

=/ Ir’(U)Idu:/ V(@) + (g (w)? + (W (u))? du. (1)

Thus s(t) is the length of the part of C' between r(a) and r(t).

By the Fundamental Theorem of Calculus, we obtain
ds
B 2
We know s(t) is an increasing function, and it is a one-to-one function, so its inverse

function t(s) exists and

dt 1
- (3)

dt

is a continuous function. Hence for a space curve C' given by a vector function
r(t)=f(t)i+gt)j+h(t)k, a<t<b,
it can be reparametrized by arc length function

r(s) =r(t(s)) = f(t(s))i+g(t(s))j+ h(t(s)) k, c<s<d,
where t(¢) = a and t(d) = b. We will show that r(s) is a smooth parametrization:

dr drdt  df(¢)dt, dg(t)dt. dh(t)dt

&5 dids T dt ds' e ds0 T dr ds
so r(s) is a nonzero, continuous vector function.
Thus the arc length s can be introduced along the curve as a parameter. It is
often useful to parametrize a curve with respect to arc length (UMERZH) because
arc length arises naturally from the shape of the curve and does not depend on a

particular coordinate system.

L MESHE F) B TEAN] 28FERE,

Definition 7 (page 862). The length of a space curve C' is the limit of lengths of
inscribed polygons. Suppose that a simple smooth curve has the vector equation
r(t) = (f(t),g(t),h(t)), a <t <b, where f'(t),¢'(t), and h'(t) are continuous. Then
its length (HIFRFE) is

/ (1)) dt = / VIR GO+ D) dt.
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A space curve C' has many different parameterizations. We have to show that
the length is well-defined: Suppose that r(u) is another smooth parametrization,
and u = u(t),t =t(u),c < u < d,t(c) = a, and t(d) = b, then t'(u) > 0, and

b d d
L:/ dr dt:/ dr gdu:/ dr
a C du C

dt dt du
[ Zeffihis [RE | NEBEZRIFN (well-defined); FRIMZEFR, HisRE—1E,

Example 8 (page 863). Reparametrize the helix r(t) = costi+ sintj + tk with

du.

respect to arc length measured from (1,0, 0) in the direction of increasing t. Find the
length of the arc of the circular helix from the point (1,0,0) to the point (1,0, 27).

Solution.

Curvature, page 863

If C is a smooth curve defined by the vector function r(¢), recall that the unit

tangent vector is

and indicated the direction of the curve.

Remark that if a space curve is parametrized by arc length r(s) = r(#(s)), then

dr dr||dt dr| 1 dr| 1

ds dt| |ds dt g dt %

That is, if a space curve C is parametrized by arc length r(s), then r'(s) is unit

tangent vector.
O bl R B2, HURERERRE 1, SR8 [iFw] HE.,
Definition 9 (page 864). The curvature (HZ5) of a space curve is

d_T
ds

kR =

where T is the unit tangent vector.

O ey BUESH K, BH—MENFRE, WASRMEE (chan rule).,
O [S [ME2K] SRERGSH, FULHRNTETU MIESH BIKE,
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The curvature of C' at a given point is a measure of how quickly the curve changes
direction at that point. Specifically, we define it to be the magnitude of the rate of

change of the unit tangent vector with respect to arc length.
Theorem 10 (page 864-869).

(a) Ift is another parameter instead of the arc length s, then
T'(t)]
k(t) = .
r'(2)]
(b) The curvature of the curve given by the vector function r(t) is
) = @ X 0)
(@)

(¢c) If a plane curve is given as the graph of a functiony = f(x), then the curvature
of the curve is
|/ (@)]

(14 (f(x))>)?

(d) If a plane curve is given as a plane parameter x = x(t),y = y(t), then the

r() =

curvature of the curve is

(e) If a plane curve is given as r =1r(f),a

curvature of the curve is

T ot corr
Proof.
(a) By chain rule, we have
de. dT(s) _ ‘dT(t(s))‘ _
ds ds

(b) Since r'(t) = T(¢)|r'(t)|, we have
v’ (t) =
and
r'(t) x r’(t) =
Notice that |T(¢)| = 1, and it implies T(¢) and T'(¢) are orthogonal, so

[r'(t) x r"(#)]
r(8)[°
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(c) A plane curve can be parametrized by (z, f(x),0) in R3, that is,
r(z) =zi+ f(z)j+ 0k
We compute
r'(z) =1i+ f(2)j+0k  [F'(2)] =1+ (f(2))>
r’(z) =0i+ f"(z)j+ 0k
r'(z) x r'(z) =

so the curvature is
o) ) xxa)
r'(z)[?

(d) A plane curve can be parametrized by (z(t),y(t),0) in R3, that is,
r(t) =x(t)i+y(t)j+ 0k
We compute
vt =2t i+y(H)j+0k )] = (@) + (1))?
v’(t) =2"(t)i+y"(t)j+ 0k

so the curvature is
OO
'(t)

(e) A plane curve can be parametrized by (r(#) cos6, r(f)sin6,0) in R3, that is,
r(0) =r(0)cosfi+r(f)sinfj+ 0k.
We compute
r'(0) = (' cosf — rsin@) i+ (r'sinf +rcosf)j+ 0k |r'(0)] = /12 + ()2
r"’(0) = (1" cosf — 2r'sin @ — rcos )i+ (r"sinf + 2r' cosf — rsinf) j + 0k,
so k-component of r'(6) x r”(0) is
(r' cos — rsin 0)(r" sin @ + 21 cos § — rsin 6)
— (r'sinf + rcos0)(r" cos @ — 21" sin @ — r cos 6)
= —r"(0)r +2(r'(9))* + 12(0).

The curvature is

§13.3-5



Example 11 (page 864). Show that the curvature of a circle of radius r is 1.

Solution.

Example 12. Find the curvature of the circular helix r(t) = costi+sintj+ tk.

Solution.

The Normal and Binormal Vectors, page 866
Definition 13 (page 866).

(a) We define the principal unit normal vector N(t) (or simply unit normal F 5
(LM E) as

0
N =

(b) The vector B(t) = T(t) x N(t) is called the binormal vector (RiEMRE). It is

perpendicular to both T and N and is also a unit vector.

Example 14 (page 866). Find the unit normal and binormal vectors for the circular
helix r(t) = costi+sintj+ tk.

Solution.
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Definition 15 (page 870).

(a) The plane determined by the normal vector N and binormal vector B at a
point P on a curve C is called the normal plane (T M) of C at P.

(b) The plane determined by the tangent vector T and normal vector N is called
the osculating plane (BYIFTMHE) of C at P.

(¢) The circle that lies in the osculating plane of C' at P, has the same tangent as
C' at P, lies on the concave side of C' (toward which IN points), and has radius
p =1 (the reciprocal of the curvature) is called the osculating circle (FGIHE)
(or the circle of curvature) (HiZS[E) of C' at P. The radius of the osculating
circle is called the radius of curvature (HiZE4K) of C' at P.

Torsion and Theory of Curve (Appendix)

Let r be a smooth curve parametrized by arc length s such that r”(s) # 0. The
number 7(s) defined by B'(s) = 7(s)N(s) is called the torsion of r(s).

To each value of the parameter s, we have associated three orthogonal unit vector
T(s),N(s), B(s). The trihedron is called Frenet trihedron at s. Since N = B x T,

we have
N'(s) = B/(s) x T(s) + B(s) x T'(s) = —7(s5)B(s) — x(s)T(s).

Hence we get the Frenet formulas:

q T 0 O T
— | N|=| & 0 —7 N
ds

B 0O 7 0 B

Physically, we can think of a space curve as being obtained from a straight line
by bending (curvature) and twisting (torsion). The following theorem states that x

and 7 describe completely the local behavior of the curve.

Fundamental Theorem of the Local Theory of Curves. Given smooth func-
tions k(s) > 0 and 7(s), there exists a smooth parametrized curve r(s) such that s is
the arc length, k(s) > 0 is the curvature, and 7(s) is the torsion of r(s). Moreover,
any other curve T, satisfying the same condition, differs from r by a rigid motion;
that is, there ewists an orthogonal linear map T of R3, with positive determinant,

and a vector ¢ such thatr = Tor + c.
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