12．6 Cylinders and Quadric Surfaces（page 834）

Cylinders，page 834

Definition 1 （page 827）．A cylinder（柱面）is a surface that consists of all lines （called rulings，母線）that are parallel to a given line and pass through a given plane curve．
\square 以上述定義，柱面是更一般的概念，不限定是「圓柱面」。
Example 2 （page 834）．The following surfaces are cylinders：
（a）Circular cylinder：$x^{2}+y^{2}=1$ ．The rulings are parallel to the z－axis．
（b）parabolic cylinder：$z=x^{2}$ ．The rulings are parallel to the y－axis．

（a）

（b）

Figure 1：（a）Circular cylinder．（b）Parabolic cylinder．

Quadric Surfaces，page 835

Definition 3 （page 835）．A quadric surfaces（二次曲面）is the graph of a second－ degree equation in three variables x, y ，an z ．The most general such equation is

$$
A x^{2}+B y^{2}+C z^{2}+D x y+E y z+F x z+G x+H y+I z+J=0
$$

where A, B, C, \ldots, J are constants．
（a）If $A=B=C=D=E=F=0$ and one of G, H, I is nonzero，then the surface is a plane．
（b）If one of A, B, C, D, E, F is nonzero，by translation and rotation，it can be brought into one of the two standard forms

$$
A x^{2}+B y^{2}+C z^{2}+J=0 \quad \text { or } \quad A x^{2}+B y^{2}+I z=0
$$

\square 在代數上，「旋轉」是將交叉項 D, E, F 消除，而平移是用「配方法」達成。

Six types of quadric surfaces in standard form，page 837

Figure 2：Ellipsoid（橢球）$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ and cone（錐）$\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ ．

Figure 3：Elliptic paraboloid（楕圓抛物面）$\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}$ and hyperbolic paraboloid （雙曲抛物面）$\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}, c<0$ ．

Figure 4：Hyperboloid of one sheet（單葉雙曲面）$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1$ and hyperboloid of two sheets（雙葉雙曲面）$-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$ ．

Exercise（page 840）．Classify the following surfaces．
（a） $4 x^{2}+y^{2}+4 z^{2}-4 y-24 z+36=0$ ．
（b）$x^{2}-y^{2}+z^{2}-4 x-2 y-2 z+4=0$ ．
（c） $4 y^{2}+z^{2}-x-16 y-4 z+20=0$ ．
（d）$z=x^{2}-y^{2}$ ．
（e）$y^{2}+z^{2}=1+x^{2}$ ．
（f）$-4 x^{2}+y^{2}-4 z^{2}=4$ ．

