
11.11 Applications of Taylor Polynomials

(page 774)

In this section we explore some applications of Taylor polynomials. Computer sci-

entists like them because polynomials are the simplest of functions. Physicists and

engineers use them in such fields as relativity, optics, blackbody radiation, electric

dipoles, the velocity of water waves, and building highways across a desert.

Approximating Functions by Polynomials, page 774

Recall that the linear approximation of f(x) at x = a (in section 3.10):

f(x) ≈ f(a) + f ′(a)(x− a) (1)

Right hand side of (1), called the linearization of f(x) at x = a, is the first-degree

Taylor polynomial T1(x). If f(x) is the sum of its Taylor series, then Tn(x) → f(x)

as n → ∞, and so Tn(x), nth-degree Taylor polynomial of f(x) at x = a, can be

used as an approximation to f(x):

f(x) ≈ Tn(x) =

n
∑

k=0

f (k)(a)

k!
(x− a)k.

When using a Taylor polynomial Tn(x) to approximate a function f(x), we have to

ask that how good an approximation is it? How large should we take n to be in

order to achieve a desired accuracy? To answer these questions we need to look at

the absolute value of the remainder |rn(x)| = |Rn(x)| = |f(x) − Tn(x)|. Here we

remark that if f(x) is the sum of its Taylor series, then rn(x) = Rn(x).

There are three possible methods for estimating the size of the error:

(1) If the series is an alternating series, we can use the Alternating Series Estima-

tion Theorem.

(2) In all cases we can use Taylor Inequality: If |f (n+1)(x)| ≤ M for |x − a| ≤ d,

then

|rn(x)| =
∣

∣

∣

∣

f (n+1)(c)

(n+ 1)!
(x− a)n+1

∣

∣

∣

∣

≤ M

(n + 1)!
|x− a|n+1 for |x− a| ≤ d.

(3) If a graphing device is available, we can use it to graph (estimate) |Rn(x)|.

Example 1. Desmos Graphing Calculator is a free, online, graphing calculator:

https://www.desmos.com/calculator

https://desmos.s3.amazonaws.com/Desmos_User_Guide.pdf

We will illustrate Taylor polynomial approximations by Desmos.
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Example 2 (page 775).

(a) Approximate f(x) = 3
√
x by a Taylor polynomial of degree 2 at a = 8.

(b) How accurate is this approximation when 7 ≤ x ≤ 9?

Solution.

(a) We compute

f(x) = f ′(x) = f ′′(x) = f ′′′(x) =

f(8) = f ′(8) = f ′′(8) =

So the desired approximation is

3
√
x ≈ T2(x) =

=

(b) We can use Taylor’s Inequality with n = 2 at x = 8:

|r2(x)| ≤

≤

Thus, if 7 ≤ x ≤ 9, the approximation in (a) is accurate to within .

Exercise. Approximate 5
√
240 with error less than 0.0001.

Example 3 (page 776). What is the maximum error possible in using the approx-

imation sin x ≈ x − x3

3!
+ x5

5!
when −0.3 ≤ x ≤ 0.3? Use this approximation to find

sin 12◦ correct to six decimal places.

Solution. Notice that the Maclaurin series sin x = x− x3

3!
+ x5

5!
− x7

7!
+· · · is alternating

for all x 6= 0, and the successive terms decrease in size because |x| < 1, so we can use

the . The error in approximating sin x

by the first three terms of its Maclaurin series is at most
∣

∣

∣

∣

x7

7!

∣

∣

∣

∣

=
|x|7
5040

≤

To find sin 12◦, we first convert to radian measure:

sin 12◦ = sin
(

12 · π

180

)

= sin
( π

15

)

≈

Thus, correct to six decimal places, sin 12◦ ≈ .
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Applications to Physics, page 778

Example 4 (page 778). In Einstein’s theory of special relativity the mass of an

object moving with velocity v is

m =
m0

√

1− v2

c2

,

where m0 is the mass of the object when at rest and c is the speed of light. The

kinetic energy of the object is the difference between its total energy and its energy

at rest: K = mc2 −m0c
2.

(a) Show that when v is very small compared with c, this expression for K agrees

with classical Newtonian physics: K = 1
2
m0v

2.

(b) Use Taylor’s Inequality to estimate the difference in these expressions for K

when |v| ≤ 100m/s.

Solution.

(a) Using the expressions given for K and m, we get

K = mc2 −m0c
2 =

m0c
2

√

1− v2

c2

−m0c
2 = m0c

2

(

(

1− v2

c2

)−
1

2

− 1

)

.

With x = −v2

c2
, the Maclaurin series for (1 + x)−

1

2 is a binomial series with

m = −1
2
. Therefore we have

(1 + x)−
1

2 = 1− 1

2
x+

(

−1
2

) (

−3
2

)

2!
x2 +

(

−1
2

) (

−3
2

) (

−5
2

)

3!
x3 + · · ·

= 1− 1

2
x+

3

8
x2 − 5

16
x3 + · · · ,

and

K = m0c
2

((

1 +
1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

)

− 1

)

= m0c
2

(

1

2

v2

c2
+

3

8

v4

c4
+

5

16

v6

c6
+ · · ·

)

If v is much smaller than c, then all terms after the first are very small when

compared with the first term. If we omit them, we get

K = m0c
2

(

1

2

v2

c2

)

=
1

2
m0v

2.
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(b) Let f(x) = m0c
2
(

(1 + x)−
1

2 − 1
)

with x = −v2

c2
. We can use Taylor’s Inequal-

ity to write

r1(x) =
f ′′(c̃)

2!
x2, where − v2

c2
≤ c̃ ≤ 0.

Since f ′′(x) = 3
4
m0c

2(1 + x)−
5

2 and we are given that |v| ≤ 100m/s, so

|f ′′(c̃)| = 3m0c
2

4 (1 + c̃)
5

2

≤ 3m0c
2

4
(

1− 1002

c2

)
5

2

.

Thus, with c = 3 · 108m/s,

|r1(x)| =
1

2
· 3m0c

2

4
(

1− 1002

c2

)
5

2

· 100
4

c4
< (4.17 · 10−10)m0.

So when |v| ≤ 100m/s, the magnitude of the error in using the Newtonian

expression for kinetic energy is at most (4.17 · 10−10)m0.

Exercise (page 782). If a surveyor measures differences in elevation when making

plans for a highway across a desert, corrections must be made for the curvature of

the earth.

(a) If R is the radius of the earth and L is the length of the highway, show that

the correction is

C = R sec

(

L

R

)

−R.

(b) Use a Taylor polynomial to show that

C ≈ L2

2R
+

5L4

24R3
.

(c) Compare the corrections given by the formulas in parts (a) and (b) for a

highway that is 100 km long. (Take the radius of the earth to be 6370 km.)

R
R

L C

θ

Figure 1: Surveyors measures differences in elevation of highway.

Exercise (page 785). Find the sum of the series (a)
∞
∑

n=0

(−1)nπn

32n(2n)!
(b)

∞
∑

n=0

(ln 2)2n

(2n)!
.
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Appendix

Example 5. Consider the function

f(x) =

{

e−
1

x2 if x 6= 0

0 if x = 0
.

(a) The function f(x) is continuous on R because

lim
x→0

e−
1

x2 = lim
y→±∞

e−y2 = lim
y→±∞

1

ey2
= 0 = f(0),

and for x 6= 0, f(x) is a composition of two continuous functions g(x) = ex

and h(x) = − 1
x2 , that is, f(x) = (g ◦ h)(x).

(b) We will show that: For x 6= 0, f (n)(x) = Pn(y)e
−y2 , where y = 1

x
, and Pn(y) is

a polynomial of y with degree 3n.

(1) When n = 1, we compute

f ′(x) =
df

dx
=

df

dy

dy

dx
= e−y2(−2y) · (−y2) = 2y3e−y2 = P1(y)e

−y2,

where P1(y) = 2y3 is a polynomial of y with degree 3.

(2) Assume that it is true for n = k, that is, f (k)(x) = dkf
dxk = Pk(y)e

−y2,

where Pk(y) is a polynomial with degree 3k.

(3) When n = k + 1, we compute

f (k+1)(x) =
dk+1f

dxk+1
=

d

dx

dkf

dxk
=

d

dy

(

dkf

dxk

)

dy

dx
=

d

dy

(

Pk(y)e
−y2
)

(−y2)

=

(

dPk(y)

dy
e−y2 + Pk(y)e

−y2(−2y)

)

(−y2)

=

(

−y2
dPk(y)

dy
+ 2y3Pk(y)

)

e−y2 .

Let Pk+1(y) = −y2 dPk(y)
dy

+ 2y3Pk(y), which is a polynomial of y with

degree 3 + 3k = 3(k + 1).

(4) By mathematical induction, we know that for x 6= 0, f (n)(x) = Pn(y)e
−y2,

where y = 1
x
, and Pn(y) is a polynomial of y with degree 3n.

(c) Now, we will show that f (n)(0) = 0 for all n ∈ N.

(1) When n = 1, we compute

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim

x→0

e−
1

x2

x
= lim

y→±∞

e−y2

1
y

= lim
y→±∞

y

ey2
(∞
∞

),L′

= lim
y→±∞

1

2yey2
= 0.
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(2) Assume that it is true for n = k, that is, f (k)(0) = 0.

(3) When n = k + 1, we compute

f (k+1)(0) = lim
x→0

f (k)(x)− f (k)(0)

x− 0
= lim

x→0

f (k)(x)

x
= lim

y→±∞

Pk(y)e
−y2

1
y

= lim
y→±∞

yPk(y)

ey2
= 0.

Remark that we can apply L’ Hospital Rule
[

3n−1
2

]

times to get the limit

is 0.

(4) By mathematical induction, we know that f (n)(0) = 0 for all n ∈ N.

(d) Since f(0) = 0 and f (n)(0) = 0 for all n ∈ N, the Maclaurin series of f(x) is

M(x) =

∞
∑

n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · = 0.

This is a zero function, so the interval of convergence of M(x) is R. We

compute the remainder

rn(x) = f(x)− Tn(x) = f(x).

We get for any x 6= 0, lim
n→∞

rn(x) = e−
1

x2 6= 0. Therefore, f(x) is not equal to

its Maclaurin series.

(e) For any integer k ≥ 0, let Ck(R) be the set (in fact, it is a vector space)

consisting of all functions f(x) that the derivatives f ′(x), f ′′(x), . . . , f (k)(x)

exist and are continuous on R. So C0(R), which is also denoted by C(R),

consists of all continuous functions on R, and C∞(R) = ∩∞

k=0C
k(Ω) consists

of all smooth functions (continuous derivatives of all orders) on R (光滑函數).

Denote Cω(R) be the set consisting of all smooth functions f(x) that for all

x ∈ R, there exists R > 0 such that f(x) equals its Taylor series expansion on

(x−R, x+R). We say a function f(x) ∈ Cω(R) is analytic (解析函數).

(f) The above discussion shows that the function f(x) is a smooth function, but

not an analytic function because f(x) is not analytic at x = 0. So the conclu-

sion is Cω(R) ( C∞(R).

Remark that we have the following relations:

Cω(R) ( C∞(R) · · · ( C2(R) ( C1(R) ( C0(R).
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Example 6. Recall that the binomial series is

∞
∑

n=0

Cm
n xn =

∞
∑

n=0

m(m− 1)(m− 2) · · · (m− n + 1)

n!
xn.

We will check the convergence of the binomial series at the endpoints.

(a) If m ≤ −1, then

|Cm
n xn| = |Cm

n (±1)n| = |Cm
n | =

∣

∣

∣

∣

m(m− 1)(m− 2) · · · (m− n+ 1)

n!

∣

∣

∣

∣

=
|m||(m− 1)||(m− 2)| · · · |(m− n + 1)|

n!
≥ 1 · 2 · 3 · · ·n

n!
= 1.

So the series
∞
∑

n=0

Cm
n xn is divergent at x = ±1 by the Test oc Divergence.

(b−1) If −1 < m < 0 and x = −1, then 0 < −m < 1, and

Cm
n xn =

m(m− 1)(m− 2) · · · (m− n+ 1)

n!
(−1)n

=
(−m)(1−m)(2−m) · · · (n− 1−m)

n!

=
(−m)

n
· (1−m)

1
· (2−m)

2
· · · (n− 1−m)

n− 1
≥ (−m)

n
.

Since
∞
∑

n=1

(−m)
n

is divergent (p-series, p = 1),
∞
∑

n=0

Cm
n xn is divergent at x = −1

by the Comparison Test.

(b1) If −1 < m < 0 and x = 1, then
∞
∑

n=0

Cm
n xn =

∞
∑

n=0

m(m−1)(m−2)···(m−n+1)
n!

is an al-

ternating series. We compute

|Cm
n | =

∣

∣

∣

∣

m(m− 1)(m− 2) · · · (m− n+ 1)

n!

∣

∣

∣

∣

≥
∣

∣

∣

∣

m(m− 1)(m− 2) · · · (m− n + 1)

n!

∣

∣

∣

∣

∣

∣

∣

∣

m− n

n + 1

∣

∣

∣

∣

= |Cm
n+1|,

so it is a decreasing sequence. Next, we calculate

|Cm
n | =

∣

∣

∣

∣

m(m− 1)(m− 2) · · · (m− n + 1)

n!

∣

∣

∣

∣

=

∣

∣

∣

∣

m

1
· (m− 1)

2
· (m− 2)

3
· · · (m− n+ 1)

n

∣

∣

∣

∣

=

∣

∣

∣

∣

(

1− m+ 1

1

)(

1− m+ 1

2

)

· · ·
(

1− m+ 1

n

)∣

∣

∣

∣

=

n
∏

k=1

(

1− m+ 1

k

)

.
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Since

ln |Cm
n | = ln

(

n
∏

k=1

(

1− m+ 1

k

)

)

=

n
∑

k=1

ln

(

1− m+ 1

k

)

<

n
∑

k=1

−m+ 1

k

= −(m+ 1)
n
∑

k=1

1

k

and lim
n→∞

n
∑

k=1

1
k
=

∞
∑

n=1

1
n
= ∞, we get

ln
(

lim
n→∞

|Cm
n |
)

= lim
n→∞

ln |Cm
n | = −∞ ⇒ lim

n→∞

|Cm
n | = 0.

By the Alternating Series Test,
∞
∑

n=0

Cm
n xn is convergent.

(c) Before we check the case m > 0, we introduce the Raabe’s Test:

The Raabe’s Test. Suppose a series
∞
∑

n=1

an satisfies

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= 1 and lim
n→∞

n

(∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

− 1

)

< −1,

then the series is absolutely convergent.

Remark that the p-series
∞
∑

n=1

1
np satisfies the condition, so the Raabe’s Test is

a Comparison Test with p-series.

If m > 0, then

lim
n→∞

n

(∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

− 1

)

= lim
n→∞

n

(∣

∣

∣

∣

Cm
n+1

Cm
n

∣

∣

∣

∣

− 1

)

= lim
n→∞

n





∣

∣

∣

m(m−1)···(m−n)
n!

∣

∣

∣

∣

∣

∣

m(m−1)···(m−n+1)
n!

∣

∣

∣

− 1





= lim
n→∞

n

( |m− n|
n+ 1

− 1

)

= lim
n→∞

n

(

n−m

n+ 1
− 1

)

= −(m+ 1) lim
n→∞

(

n

n+ 1

)

= −(m+ 1) < −1.

By the Raabe’s Test,
∞
∑

n=0

Cm
n xn is convergent.
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Example 7. We will prove (1 + x)m =
∞
∑

n=0

Cm
n xn on |x| < 1.

(a) Let g(x) =
∞
∑

n=0

Cm
n xn on the interval of convergence (−1, 1). We will show that

(1 + x)g′(x) = mg(x) on the interval of convergence (−1, 1).

We compute g′(x) =
∞
∑

n=1

Cm
n nxn−1 on the interval of convergence (−1, 1), and

(1 + x)g′(x) = (1 + x)
∞
∑

n=1

Cm
n nxn−1 =

∞
∑

n=1

Cm
n nxn−1 +

∞
∑

n=1

Cm
n nxn

=

∞
∑

n=0

Cm
n+1(n+ 1)xn +

∞
∑

n=0

Cm
n nxn

=

∞
∑

n=0

m(m− 1)(m− 2) · · · (m− n+ 1)(m− n)(n + 1)

(n+ 1)!
xn

+

∞
∑

n=0

m(m− 1)(m− 2) · · · (m− n + 1)n

n!
xn

=

∞
∑

n=0

m(m− 1)(m− 2) · · · (m− n+ 1)((m− n) + n)

n!
xn

= m
∞
∑

n=0

Cm
n xn = mg(x).

(b) Solve the differential equation (1 + x)g′(x) = mg(x), g(0) = 1, |x| < 1. It is

separable equation, so we have

g′(x)

g(x)
=

m

1 + x
⇒ d

dx
(ln g(x)) =

m

1 + x
⇒ ln g(x) = m ln(1 + x) + C.

Since g(0) = 1, we know that C = 0. Hence ln g(x) = m ln(1+x) = ln(1+x)m

and it implies g(x) =
∞
∑

n=0

Cm
n xn = (1 + x)m on |x| < 1.
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