
11.10 Taylor and Maclaurin Series (page 759)

In this section, we will answer two questions: Which functions have power series

representation? How can we find such representation?

First, suppose that a smooth function f(x) can be represented by a power series:

f(x) = c0 + c1(x− a) + c2(x− a)2 + c3(x− a)3 + · · · , if |x− a| < R. (1)

• Put x = a, then we get .

• Since f ′(x) = ,

we put x = a and get .

• Since f ′′(x) = , we put x = a and get .

• By induction, since f (k)(x) = , we have .

Theorem 1 (page 759). If f(x) has a power series representation (expansion) at a:

f(x) =

∞
∑

n=0

cn(x− a)n for |x− a| < R

then its coefficients are given by the formula cn =
f (n)(a)

n!
.

Definition 2 (page 760). Given a smooth function f(x), define the Taylor series

of the function f(x) at a (or about a or centered at a) (函數 f(x) 在 x = a 處的泰勒

級數) by

T (x) =

∞
∑

n=0

f (n)(a)

n!
(x− a)n = f(a) +

f ′(a)

1!
(x− a) +

f ′′(a)

2!
(x− a)2 + · · · . (2)

For the special cases a = 0 the series (2) becomes

M(x) =
∞
∑

n=0

f (n)(0)

n!
xn = f(0) +

f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · · .

This case the function M(x) is given the special name Maclaurin series (馬克勞林

級數).

� 由前面討論知道: 「若 f(x) 可表示成冪級數時」, 則 f(x) 和它的泰勒級數 T (x) 一致。

� 我們必須追問 (研究): 有哪些函數 「可以」寫成冪級數?(存在函數無法表示成冪級數。)
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Example 3 (page 760). Find the Maclaurin series of the function f(x) = ex and

its radius of convergence.

Solution. Since f (n)(x) = , we know that f (n)(0) = for all n ∈ N or

n = 0. Therefore the Maclaurin series of f(x) = ex is

∞
∑

n=0

f (n)(0)

n!
xn =

To find the radius of convergence, we let an = , then

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

By the , the radius of convergence is .

Question 4 (page 761). Under what circumstances is a function equal to the sum

of its Taylor series? In other words, if f(x) has derivatives of all orders, when is it

true that

f(x)
?
= T (x)

def.
=

∞
∑

n=0

f (n)(a)

n!
(x− a)n

def.
= lim

n→∞
Tn(x),

where

Tn(x) =
n

∑

k=0

f (k)(a)

k!
(x− a)k = f(a) +

f ′(a)

1!
(x− a) + · · ·+ f (n)(a)

n!
(x− a)n. (3)

Definition 5 (page 761).

(a) The polynomial Tn(x) in (3) is called n-th degree Taylor polynomial of f(x) at

a (f(x) 在 x = a 的 n-階泰勒多項式).

(b) Define the remainder (餘項) of the Taylor series as rn(x)
def.
= f(x)− Tn(x).

Theorem 6 (page 761). A smooth function f(x) = T (x) on the interval |x−a| < R

if and only if lim
n→∞

rn(x) = 0 for |x− a| < R.

Proof. (⇒) Since f(x) = lim
n→∞

Tn(x) and rx(x) = f(x)− Tn(x), we have

lim
n→∞

rn(x) = lim
n→∞

(f(x)− Tn(x)) = f(x)− lim
n→∞

Tn(x) = f(x)− f(x) = 0.

(⇐) Conversely, since lim
n→∞

rn(x) = 0 and Tn(x) = f(x)− rn(x), we have

T (x) = lim
n→∞

Tn(x) = lim
n→∞

(f(x)− rn(x)) = f(x)− lim
n→∞

rn(x) = f(x)− 0 = f(x).

� 想清楚: 函數是否與其泰勒級數 「相同」, 和泰勒級數的 「收斂範圍」 是兩回事。

� 定理得知: 函數與其泰勒級數在其收斂範圍內 「相等」的等價條件是 「餘項趨近於零」。
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Question 7 (page 762). How do we show that lim
n→∞

rn(x) = 0 for a specific function

f(x)?

Theorem 8. Suppose that f(x) has continuous derivative at x = a up to n + 1

order, then

f(x) = f(a) +
f ′(a)

1!
(x− a) + · · ·+ f (n)(a)

n!
(x− a)n + rn(x) = Tn(x) + rn(x),

where rn(x) =
f (n+1)(c)

(n+ 1)!
(x− a)n+1, c is a number between a and x.

Proof. Without loss of generality, we assume a < x. Consider the function

g(t) = f(x)− f(t)− f ′(t)

1!
(x− t)− · · · − f (n)(t)

n!
(x− t)n,

then g(t) is continuous on [a, x], and

g′(t) = −
n

∑

k=0

f (k+1)(t)

k!
(x− t)k −

n
∑

k=1

f (k)(t)

k!
k(x− t)k−1(−1)

= −
n

∑

k=0

f (k+1)(t)

k!
(x− t)k +

n
∑

k=1

f (k)(t)

(k − 1)!
(x− t)k−1

= −
n

∑

k=0

f (k+1)(t)

k!
(x− t)k +

n−1
∑

k=0

f (k+1)(t)

k!
(x− t)k = −f (n+1)(t)

n!
(x− t)n.

Let h(t) = (x− t)n+1, by the Cauchy Theorem (generalized Mean Value Theorem),

then there exists c ∈ (a, x) such that

g′(c)

h′(c)
=

g(x)− g(a)

h(x)− h(a)
⇒ −f(n+1)(c)(x−c)n

n!

−(n + 1)(x− c)n
=

0− rn(x)

0− (x− a)n+1
,

so

rn(x) =
f (n+1)(c)

(n + 1)!
(x− a)n+1.

� 想成是 「均值定理」的高階版本, 餘項形式和泰勒多項式一樣,只是高次微分處代入 c。

Once we have this expression of the remainder, we can estimate it by the following

theorem.

Taylor’s Inequality (page 762). If |f (n+1)(x)| ≤ M for |x − a| ≤ d, then the

remainder rn(x) of the Taylor series satisfies the inequality

|rn(x)| =
∣

∣

∣

∣

f (n+1)(c)

(n + 1)!
(x− a)n+1

∣

∣

∣

∣

≤ M

(n+ 1)!
|x− a|n+1 for |x− a| ≤ d.
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Example 9 (page 763).

(1) Prove that ex is equal to the sum of Maclaurin series.

(2) Find the Taylor series for f(x) = ex at a = 2.

Solution.

(1) If f(x) = ex, then f (n)(x) = ex for all n ∈ N. Given x ∈ R, there is a positive

number d such that |x| ≤ d. Since |f (n+1)(x)| = ex ≤ ed, we get

|rn(x)| =
∣

∣

∣

∣

f (n+1)(c)

(n + 1)!
xn+1

∣

∣

∣

∣

≤ for |x| ≤ d.

Notice that ed is a number independent of n, so we have

lim
n→∞

ed

(n+ 1)!
|x|n+1 =

By the Squeeze Theorem lim
n→∞

rn(x) = 0, and ex =
∞
∑

n=0

1
n!
xn for all x ∈ R.

(2) We have f (n)(2) = e2, so the Taylor series for f(x) = ex at x = 2 is

Another viewpoint is .

Example 10 (page 764). Find the Maclrurin series for f(x) = sin x. Prove that it

represents sin x for all x.

Solution. We compute for k = 0, 1, 2, . . .,

f (4k)(x) = f (4k+1)(x) = f (4k+2)(x) = f (4k+3)(x) =

f (4k)(0) = f (4k+1)(0) = f (4k+2)(0) = f (4k+3)(0) =

so the Maclaurin series for f(x) = sin x is

Since f (n+1)(x) is ± sin x or ± cosx, we know that |f (n+1)(x)| ≤ 1 for all x ∈ R. By

Taylor’s Inequality:

|rn(x)| =

Since lim
n→∞

, we have lim
n→∞

rn(x) = 0 for all x ∈ R by

the Squeeze Theorem. Thus sin x is equal to the sum of its Maclaurin series
∞
∑

n=0

(−1)n

(2n+1)!
x2n+1.
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Example 11 (page 764–765).

(1) Represent f(x) = sin x as the sum of its Taylor series centered at x = π
3
.

(2) Find the Maclaurin series for cos x.

(3) Find the Maclaurin series for x cos x.

Solution. We have for k = 0, 1, 2, 3, . . .

f (4k)(x) = f (4k+1)(x) = f (4k+2)(x) = f (4k+3)(x) =

f (4k)(π
3
) = f (4k+1)(π

3
) = f (4k+2)(π

3
) = f (4k+3)(π

3
) =

(1) The Taylor series at π
3
is

(2) Instead of computing derivatives and substituting in the Maclaurin series for

cosx, we can differentiate the Maclaurin series for sin x:

cosx =

Since the Maclaurin series for sin x converges for all x, the differential series

for cosx also converges for all x.

(3) We can multiply the series for cos x by x:

x cosx =

Example 12 (page 766). Find the Maclaurin series for f(x) = (1 + x)m, where m

is any real number.

Solution.

Therefore the Maclaurin series for f(x) = (1 + x)m is
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Example 13 (page 766). Find the radius of convergence of the binomial series (二

項式級數, 從上一個例子推得)
∞
∑

n=0

m(m−1)···(m−n+1)
n!

xn.

Solution. If m is a nonnegative integer, then the terms are eventually 0 and so the

series is finite. For other values of m, if the n-th term is an, then
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=

By the , the binomial series converges if and diverges if

, and the radius of convergence is .

The Binomial Series (page 767). If m is any real number and |x| < 1, then

(1 + x)m =

∞
∑

n=0

Cm
n xn = 1 +mx+

m(m− 1)

2!
x2 +

m(m− 1)(m− 2)

3!
x3 + · · · .

The interval of convergence depends on m: (−1, 1) if m ≤ −1; (−1, 1] if −1 < m <

0; [−1, 1] if m > 0.

� 直接估計餘項趨近於零比較麻煩,有其他的方法證明二項式函數與二項式級數 「相同」。

Definition 14 (page 766). Numbers Cm
n = m(m−1)(m−2)···(m−n+1)

n!
are called binomial

coefficients (二項式係數). Remark that Cm
0 ≡ 1 for all m ∈ R.

Example 15 (page 767). Find the Maclaurin series for g(x) = 1√
4−x

and its radius

of convergence.

Solution. We rewrite f(x) in a form where we can use the binomial series:

1√
4− x

=

Using the binomial series with m = and with x replaced by , we have

1√
4− x

=

The series converges if , so the radius of convergence is .
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Important Maclaurin series and their radii of convergence

(1)
1

1− x
=

∞
∑

n=0

xn = 1 + x+ x2 + x3 + · · · R = 1

(2) ex =

∞
∑

n=0

xn

n!
= 1 +

x

1!
+

x2

2!
+

x3

3!
+ · · · R = ∞

(3) sin x =

∞
∑

n=0

(−1)nx2n+1

(2n+ 1)!
= x− x3

3!
+

x5

5!
− x7

7!
+ · · · R = ∞

(4) cosx =
∞
∑

n=0

(−1)nx2n

(2n)!
= 1− x2

2!
+

x4

4!
− x6

6!
+ · · · R = ∞

(5) tan−1 x =
∞
∑

n=0

(−1)nx2n+1

2n+ 1
= x− x3

3
+

x5

5
− x7

7
+ · · · R = 1

(6) ln(1 + x) =

∞
∑

n=1

(−1)n−1xn

n
= x− x2

2
+

x3

3
− x4

4
+ · · · R = 1

(7) (1+x)m =

∞
∑

n=0

Cm
n xn = 1+mx+

m(m− 1)

2!
x2+

m(m− 1)(m− 2)

3!
+ · · · R = 1

Example 16 (page 768). Find the sum of the series

1

1 · 2 − 1

2 · 22 +
1

3 · 23 − 1

4 · 24 + · · · .

Solution.

Example 17 (page 769). Evaluate lim
x→0

ex − 1− x

x2
.

Solution. Using the Maclaurin series for ex, we have

lim
x→0

ex − 1− x

x2
=

=

because power series are continuous functions.
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Multiplication and division of power series, page 770

Example 18 (page 770). Find the first three nonzero terms in the Maclaurin series

for (1) ex sin x and (2) tan x.

Solution.
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Example 19 (page 768).

(1) Evaluate

∫

e−x2

dx as an infinite series.

(2) Evaluate

∫ 1

0

e−x2

dx correct to within an error of 0.001.

Solution.

(1) We replace x with −x2 in the series for ex and get, for all x ∈ R,

e−x2

=

We integrate term by term:
∫

e−x2

dx =

The series is convergent . because e−x2
is convergent .

(2) We compute
∫ 1

0

e−x2

dx =

=

≈

The Alternating Series Estimation Theorem shows that the error is less than

Example (TA) 20. Let f(x) = ln(5− x).

(a) Find the power series representation for f(x) at x = 0.

(b) Find f (n)(0).

Solution.
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Example (TA) 21.

(a) Write down the general terms the MacLaurin series of sin x and sin−1 x.

(b) Find their radii of convergence.

(c) Find lim
x→0

sin x · sin−1 x− x2

x6
.

Solution.
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