11．10 Taylor and Maclaurin Series（page 759）

In this section，we will answer two questions：Which functions have power series representation？How can we find such representation？

First，suppose that a smooth function $f(x)$ can be represented by a power series：

$$
\begin{equation*}
f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\cdots, \quad \text { if }|x-a|<R . \tag{1}
\end{equation*}
$$

－Put $x=a$ ，then we get \qquad ．
－Since $f^{\prime}(x)=$
we put $x=a$ and get \qquad ．
－Since $f^{\prime \prime}(x)=$ \qquad ，we put $x=a$ and get \qquad
－By induction，since $f^{(k)}(x)=$ \qquad ，we have \qquad
Theorem 1 （page 759）．If $f(x)$ has a power series representation（expansion）at a：

$$
f(x)=\sum_{n=0}^{\infty} c_{n}(x-a)^{n} \text { for }|x-a|<R
$$

then its coefficients are given by the formula $c_{n}=\frac{f^{(n)}(a)}{n!}$ ．
Definition 2 （page 760）．Given a smooth function $f(x)$ ，define the Taylor series of the function $f(x)$ at a（or about a or centered at a ）（函數 $f(x)$ 在 $x=a$ 處的泰勒級數）by

$$
\begin{equation*}
T(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\frac{f^{\prime \prime}(a)}{2!}(x-a)^{2}+\cdots . \tag{2}
\end{equation*}
$$

For the special cases $a=0$ the series（2）becomes

$$
M(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=f(0)+\frac{f^{\prime}(0)}{1!} x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots .
$$

This case the function $M(x)$ is given the special name Maclaurin series（馬克勞林級數）．由前面討論知道：「若 $f(x)$ 可表示成幕級數時」，則 $f(x)$ 和它的泰勒級數 $T(x)$ 一致。我們必須追問（研究）：有哪些函數「可以」寫成幕級數？（存在函數無法表示成幕級數。）

Example 3 （page 760）．Find the Maclaurin series of the function $f(x)=\mathrm{e}^{x}$ and its radius of convergence．

Solution．Since $f^{(n)}(x)=$ \qquad ，we know that $f^{(n)}(0)=$ \qquad for all $n \in \mathbb{N}$ or $n=0$ ．Therefore the Maclaurin series of $f(x)=\mathrm{e}^{x}$ is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=
$$

To find the radius of convergence，we let $a_{n}=$ \qquad ，then

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=
$$

By the \qquad ，the radius of convergence is \qquad ．

Question 4 （page 761）．Under what circumstances is a function equal to the sum of its Taylor series？In other words，if $f(x)$ has derivatives of all orders，when is it true that

$$
f(x) \stackrel{?}{=} T(x) \stackrel{\text { def. }}{=} \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n} \stackrel{\text { def. }}{=} \lim _{n \rightarrow \infty} T_{n}(x)
$$

where

$$
\begin{equation*}
T_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n} . \tag{3}
\end{equation*}
$$

Definition 5 （page 761）．
（a）The polynomial $T_{n}(x)$ in（3）is called n－th degree Taylor polynomial of $f(x)$ at $a(f(x)$ 在 $x=a$ 的 n－階泰勒多項式）．
（b）Define the remainder（餘項）of the Taylor series as $r_{n}(x) \stackrel{\text { def．}}{=} f(x)-T_{n}(x)$ ．
Theorem 6 （page 761）．A smooth function $f(x)=T(x)$ on the interval $|x-a|<R$ if and only if $\lim _{n \rightarrow \infty} r_{n}(x)=0$ for $|x-a|<R$ ．
Proof．(\Rightarrow) Since $f(x)=\lim _{n \rightarrow \infty} T_{n}(x)$ and $r_{x}(x)=f(x)-T_{n}(x)$ ，we have

$$
\lim _{n \rightarrow \infty} r_{n}(x)=\lim _{n \rightarrow \infty}\left(f(x)-T_{n}(x)\right)=f(x)-\lim _{n \rightarrow \infty} T_{n}(x)=f(x)-f(x)=0
$$

(\Leftarrow) Conversely，since $\lim _{n \rightarrow \infty} r_{n}(x)=0$ and $T_{n}(x)=f(x)-r_{n}(x)$ ，we have

$$
T(x)=\lim _{n \rightarrow \infty} T_{n}(x)=\lim _{n \rightarrow \infty}\left(f(x)-r_{n}(x)\right)=f(x)-\lim _{n \rightarrow \infty} r_{n}(x)=f(x)-0=f(x) .
$$

想清楚：函數是否與其泰勒級數「相同」，和泰勒級數的「收斂範圍」是兩回事。定理得知：函數與其泰勒級數在其收斂範圍內「相等」的等價條件是「餘項趨近於零」。

Question 7 （page 762）．How do we show that $\lim _{n \rightarrow \infty} r_{n}(x)=0$ for a specific function $f(x)$ ？

Theorem 8．Suppose that $f(x)$ has continuous derivative at $x=a$ up to $n+1$ order，then

$$
f(x)=f(a)+\frac{f^{\prime}(a)}{1!}(x-a)+\cdots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+r_{n}(x)=T_{n}(x)+r_{n}(x),
$$

where $r_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}, c$ is a number between a and x ．
Proof．Without loss of generality，we assume $a<x$ ．Consider the function

$$
g(t)=f(x)-f(t)-\frac{f^{\prime}(t)}{1!}(x-t)-\cdots-\frac{f^{(n)}(t)}{n!}(x-t)^{n},
$$

then $g(t)$ is continuous on $[a, x]$ ，and

$$
\begin{aligned}
g^{\prime}(t) & =-\sum_{k=0}^{n} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k}-\sum_{k=1}^{n} \frac{f^{(k)}(t)}{k!} k(x-t)^{k-1}(-1) \\
& =-\sum_{k=0}^{n} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k}+\sum_{k=1}^{n} \frac{f^{(k)}(t)}{(k-1)!}(x-t)^{k-1} \\
& =-\sum_{k=0}^{n} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k}+\sum_{k=0}^{n-1} \frac{f^{(k+1)}(t)}{k!}(x-t)^{k}=-\frac{f^{(n+1)}(t)}{n!}(x-t)^{n} .
\end{aligned}
$$

Let $h(t)=(x-t)^{n+1}$ ，by the Cauchy Theorem（generalized Mean Value Theorem）， then there exists $c \in(a, x)$ such that

$$
\frac{g^{\prime}(c)}{h^{\prime}(c)}=\frac{g(x)-g(a)}{h(x)-h(a)} \Rightarrow \frac{-\frac{f^{(n+1)}(c)(x-c)^{n}}{n!}}{-(n+1)(x-c)^{n}}=\frac{0-r_{n}(x)}{0-(x-a)^{n+1}}
$$

so

$$
r_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

想成是「均值定理」的高階版本，餘項形式和泰勒多項式一樣，只是高次微分處代入 c 。
Once we have this expression of the remainder，we can estimate it by the following theorem．

Taylor＇s Inequality（page 762）．If $\left|f^{(n+1)}(x)\right| \leq M$ for $|x-a| \leq d$ ，then the remainder $r_{n}(x)$ of the Taylor series satisfies the inequality

$$
\left|r_{n}(x)\right|=\left|\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}\right| \leq \frac{M}{(n+1)!}|x-a|^{n+1} \quad \text { for } \quad|x-a| \leq d
$$

Example 9 (page 763).
(1) Prove that e^{x} is equal to the sum of Maclaurin series.
(2) Find the Taylor series for $f(x)=\mathrm{e}^{x}$ at $a=2$.

Solution.

(1) If $f(x)=\mathrm{e}^{x}$, then $f^{(n)}(x)=\mathrm{e}^{x}$ for all $n \in \mathbb{N}$. Given $x \in \mathbb{R}$, there is a positive number d such that $|x| \leq d$. Since $\left|f^{(n+1)}(x)\right|=\mathrm{e}^{x} \leq \mathrm{e}^{d}$, we get

$$
\left|r_{n}(x)\right|=\left|\frac{f^{(n+1)}(c)}{(n+1)!} x^{n+1}\right| \leq \quad \text { for } \quad|x| \leq d
$$

Notice that e^{d} is a number independent of n, so we have

$$
\lim _{n \rightarrow \infty} \frac{\mathrm{e}^{d}}{(n+1)!}|x|^{n+1}=
$$

By the Squeeze Theorem $\lim _{n \rightarrow \infty} r_{n}(x)=0$, and $\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}$ for all $x \in \mathbb{R}$.
(2) We have $f^{(n)}(2)=\mathrm{e}^{2}$, so the Taylor series for $f(x)=\mathrm{e}^{x}$ at $x=2$ is

Another viewpoint is \qquad .

Example 10 (page 764). Find the Maclrurin series for $f(x)=\sin x$. Prove that it represents $\sin x$ for all x.

Solution. We compute for $k=0,1,2, \ldots$,

$$
\begin{array}{llll}
f^{(4 k)}(x)= & f^{(4 k+1)}(x)= & f^{(4 k+2)}(x)= & f^{(4 k+3)}(x)= \\
f^{(4 k)}(0)= & f^{(4 k+1)}(0)= & f^{(4 k+2)}(0)= & f^{(4 k+3)}(0)=
\end{array}
$$

so the Maclaurin series for $f(x)=\sin x$ is

Since $f^{(n+1)}(x)$ is $\pm \sin x$ or $\pm \cos x$, we know that $\left|f^{(n+1)}(x)\right| \leq 1$ for all $x \in \mathbb{R}$. By Taylor's Inequality:

$$
\left|r_{n}(x)\right|=
$$

Since lim the Squeeze Theorem. Thus $\sin x$ is equal to the sum of its Maclaurin series $\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n+1)!} x^{2 n+1}$.

Example 11 (page 764-765).
(1) Represent $f(x)=\sin x$ as the sum of its Taylor series centered at $x=\frac{\pi}{3}$.
(2) Find the Maclaurin series for $\cos x$.
(3) Find the Maclaurin series for $x \cos x$.

Solution. We have for $k=0,1,2,3, \ldots$

$$
\begin{array}{llll}
f^{(4 k)}(x)= & f^{(4 k+1)}(x)= & f^{(4 k+2)}(x)= & f^{(4 k+3)}(x)= \\
f^{(4 k)}\left(\frac{\pi}{3}\right)= & f^{(4 k+1)}\left(\frac{\pi}{3}\right)= & f^{(4 k+2)}\left(\frac{\pi}{3}\right)= & f^{(4 k+3)}\left(\frac{\pi}{3}\right)=
\end{array}
$$

(1) The Taylor series at $\frac{\pi}{3}$ is
(2) Instead of computing derivatives and substituting in the Maclaurin series for $\cos x$, we can differentiate the Maclaurin series for $\sin x$:

$$
\cos x=
$$

Since the Maclaurin series for $\sin x$ converges for all x, the differential series for $\cos x$ also converges for all x.
(3) We can multiply the series for $\cos x$ by x :

$$
x \cos x=
$$

Example 12 (page 766). Find the Maclaurin series for $f(x)=(1+x)^{m}$, where m is any real number.

Solution.

Therefore the Maclaurin series for $f(x)=(1+x)^{m}$ is

Example 13 （page 766）．Find the radius of convergence of the binomial series（二項式級數，從上一個例子推得）$\sum_{n=0}^{\infty} \frac{m(m-1) \cdots(m-n+1)}{n!} x^{n}$ ．
Solution．If m is a nonnegative integer，then the terms are eventually 0 and so the series is finite．For other values of m ，if the n－th term is a_{n} ，then

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=
$$

By the \qquad ，the binomial series converges if \qquad and diverges if
\qquad ，and the radius of convergence is \qquad ．

The Binomial Series（page 767）．If m is any real number and $|x|<1$ ，then

$$
(1+x)^{m}=\sum_{n=0}^{\infty} C_{n}^{m} x^{n}=1+m x+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{3!} x^{3}+\cdots .
$$

The interval of convergence depends on m ：$(-1,1)$ if $m \leq-1$ ；$(-1,1]$ if $-1<m<$ $0 ;[-1,1]$ if $m>0$ ．直接估計餘項趨近於零比較麻煩，有其他的方法證明二項式函數與二項式級數「相同」。
Definition 14 （page 766）．Numbers $C_{n}^{m}=\frac{m(m-1)(m-2) \cdots(m-n+1)}{n!}$ are called binomial coefficients（二項式係數）．Remark that $C_{0}^{m} \equiv 1$ for all $m \in \mathbb{R}$ ．

Example 15 （page 767）．Find the Maclaurin series for $g(x)=\frac{1}{\sqrt{4-x}}$ and its radius of convergence．

Solution．We rewrite $f(x)$ in a form where we can use the binomial series：

$$
\frac{1}{\sqrt{4-x}}=
$$

Using the binomial series with $m=$ \qquad and with x replaced by \qquad ，we have $\frac{1}{\sqrt{4-x}}=$
\qquad ，so the radius of convergence is \qquad ．

Important Maclaurin series and their radii of convergence

(1) $\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+x^{3}+\cdots$
$R=1$
(2) $\mathrm{e}^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots$ $R=\infty$
(3) $\sin x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots$ $R=\infty$
(4) $\cos x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots$ $R=\infty$
(5) $\tan ^{-1} x=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots$
$R=1$
(6) $\ln (1+x)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1} x^{n}}{n}=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \quad R=1$
(7) $(1+x)^{m}=\sum_{n=0}^{\infty} C_{n}^{m} x^{n}=1+m x+\frac{m(m-1)}{2!} x^{2}+\frac{m(m-1)(m-2)}{3!}+\cdots R=1$

Example 16 (page 768). Find the sum of the series

$$
\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 2^{2}}+\frac{1}{3 \cdot 2^{3}}-\frac{1}{4 \cdot 2^{4}}+\cdots
$$

Solution.

Example 17 (page 769). Evaluate $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1-x}{x^{2}}$.
Solution. Using the Maclaurin series for e^{x}, we have

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{\mathrm{e}^{x}-1-x}{x^{2}} & = \\
& =
\end{aligned}
$$

because power series are continuous functions.

Multiplication and division of power series, page 770

Example 18 (page 770). Find the first three nonzero terms in the Maclaurin series for (1) $\mathrm{e}^{x} \sin x$ and (2) $\tan x$.

Solution.

Example 19 (page 768).
(1) Evaluate $\int \mathrm{e}^{-x^{2}} \mathrm{~d} x$ as an infinite series.
(2) Evaluate $\int_{0}^{1} \mathrm{e}^{-x^{2}} \mathrm{~d} x$ correct to within an error of 0.001 .

Solution.

(1) We replace x with $-x^{2}$ in the series for e^{x} and get, for all $x \in \mathbb{R}$,

$$
\mathrm{e}^{-x^{2}}=
$$

We integrate term by term:

$$
\int \mathrm{e}^{-x^{2}} \mathrm{~d} x=
$$

The series is convergent \qquad . because $\mathrm{e}^{-x^{2}}$ is convergent \qquad .
(2) We compute

$$
\begin{aligned}
\int_{0}^{1} \mathrm{e}^{-x^{2}} \mathrm{~d} x & = \\
& = \\
& \approx
\end{aligned}
$$

The Alternating Series Estimation Theorem shows that the error is less than

Example (TA) 20. Let $f(x)=\ln (5-x)$.
(a) Find the power series representation for $f(x)$ at $x=0$.
(b) Find $f^{(n)}(0)$.

Solution.

(a) Write down the general terms the MacLaurin series of $\sin x$ and $\sin ^{-1} x$.
(b) Find their radii of convergence.
(c) Find $\lim _{x \rightarrow 0} \frac{\sin x \cdot \sin ^{-1} x-x^{2}}{x^{6}}$.

Solution.

