11．8 Power Series（page 746）

Definition 1 （page 746）．A power series（冪級數）is a series of the form

$$
\sum_{n=0}^{\infty} c_{n} x^{n}=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots
$$

where x is a variable and the c_{n}＇s are constants called the coefficients（係數）of the series．

A power series may converge for some values of x and diverge for other values of x ．The sum of the series is a function

$$
f(x)=c_{0}+c_{1} x+c_{2} x^{2}+c_{3} x^{3}+\cdots+c_{n} x^{n}+\cdots
$$

whose domain（定義域）is the set of all x for which the series converges．
\square 「幕級數」可想成是「多項式」的推廣－多了極限的運算。
Example 2 （page 746）．If $c_{n} \equiv 1$ ，the power series becomes the geometric series

$$
\sum_{n=0}^{\infty} x^{n}=1+x+x^{2}+\cdots+x^{n}+\cdots
$$

which converges when \qquad and diverges when \qquad ．

Definition 3 （page 747）．A series of the form

$$
\sum_{n=0}^{\infty} c_{n}(x-a)^{n}=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+\cdots
$$

is called a power series in $(x-a)$（以 $(x-a)$ 形式的冪級數）or a power series centered at a（以 a 爲中心的幕級數）or power series about a（關於 a 的幕級數）．約定 $(x-a)^{0} \equiv 1$ ，即使 $x=a$ 也是如此。任何關於 a 的幂級數，必在 $x=a$ 收斂，所以幕級數的定義域非空集合。
Theorem 4 （page 749）．For a given power series $\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ there are only three possibilities：
（a）The series converges only when $x=a$ ．
（b）The series converges for all x ．
（c）There is a positive number R such that the series converges if $|x-a|<R$ and diverges if $|x-a|>R$ ．（注意此定理還不完整，端點收斂行爲因級數而異。）

Definition 5 （page 749）．
（1）The number R in case（c）is called the radius of convergence（收斂半徑）of the power series．
（2）By convention，the radius of convergence is $R=0$ in case（a）and $R=\infty$ in case（b）．
（3）The interval of convergence（收斂區間）of a power series is the interval that consists of all values of x for which the series converges．When x is an endpoint （端點）of the interval，that is，$x=a \pm R$ ，anything can happen－the interval of convergence could be

$$
(a-R, a+R) \quad(a-R, a+R] \quad[a-R, a+R) \quad[a-R, a+R] .
$$

Example 6 （page 747）．Find the interval of the convergence of the following series：
（a）$\sum_{n=0}^{\infty} n!x^{n}$
（b）$\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{2 n}(n!)^{2}}$（Bessel function of order 0）
（c）$\sum_{n=1}^{\infty} \frac{1}{n}(x-3)^{n}$ ．

Solution．

Example (TA) 7.
(a) Evaluate $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}$.
(b) Evaluate $\lim _{n \rightarrow \infty} \frac{1-\cos \left(\frac{1}{n}\right)}{1-\cos \left(\frac{1}{n+1}\right)}$.
(c) Find the interval of convergence of the power series $\sum_{n=1}^{\infty}\left(1-\cos \left(\frac{1}{n}\right)\right) x^{n}$.

Solution.

Exercise. Find the radius of convergence of the power series

$$
\sum_{n=0}^{\infty} \frac{n!\left(3^{n}+1\right)}{1 \cdot 3 \cdot 5 \cdots \cdots(2 n+1)} x^{n}
$$

Exercise. Consider the power series $\sum_{n=2}^{\infty} \frac{1}{n \ln n} x^{n}$.
(a) Find the radius of the convergence r.
(b) Discuss whether the power series is convergent or divergent at $x=r$ and $x=-r$.
Exercise. Find the interval of convergence of the series $\sum_{n=1}^{\infty} \ln \left(\frac{n+1}{n}\right) x^{n}$.

