11.4 The Comparison Tests (page 727)

The Comparison Test (page 727). Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms and $a_n \leq b_n$ for all n.

(a) If $\sum_{n=1}^{\infty} b_n$ is convergent, then $\sum_{n=1}^{\infty} a_n$ is also convergent.

(b) If
$$\sum_{n=1}^{\infty} a_n$$
 is divergent, then $\sum_{n=1}^{\infty} b_n$ is also divergent.

Proof. Let $s_n = \sum_{k=1}^n a_k, t_n = \sum_{k=1}^n b_k$, and $t = \sum_{k=1}^\infty b_k$.

(a) <u>Monotone</u>: Since both series have positive terms, the sequences $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ are increasing.

<u>Bounded</u>: Since $a_k \leq b_k$ for all k, we have $s_n \leq t_n \leq t$.

By the ______,
$$\sum_{n=1}^{\infty} a_n$$
 converges.
(b) If $\sum_{n=1}^{\infty} a_n$ is divergent, then $s_n \to \infty$, thus $t_n \to \infty$. Therefore $\sum_{n=1}^{\infty} b_n$ diverges.

Most of time we use *p*-series and geometric series for the purpose of comparison.

- (1) <u>*p*-series</u>: $\sum_{n=1}^{\infty} \frac{1}{n^p}$. It is convergent if _____ and divergent if _____.
- (2) <u>geometric series</u>: $\sum_{n=1}^{\infty} ar^{n-1}$. It is convergent if _____ and divergent if _____.

Example 1. Show that the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ is convergent.

Solution.

Exercise. Determine the convergence of the following series:

(a)
$$\sum_{n=0}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$$
. (Hint: 分子有理化)
(b) $\sum_{n=1}^{\infty} \sqrt{\sin \frac{1}{n^3}}$. (Hint: _____)

§11.4-1

Exercise.

- (a) Prove that $\ln(n+1) < 1 + \frac{1}{2} + \dots + \frac{1}{n} < 1 + \ln n$.
- (b) Test for convergence of $\sum_{n=1}^{\infty} \frac{1}{1+\frac{1}{2}+\dots+\frac{1}{n}}$.

The Limit Comparison Test (page 729). Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms. If

$$\lim_{n \to \infty} \frac{a_n}{b_n} = c,$$

where c is a finite number and c > 0, then either both series converge or both diverge.

Proof. Let m and M be <u>positive</u> numbers such that m < c < M. Since $\frac{a_n}{b_n}$ is close to c for large n, there is an integer N such that

$$m < \frac{a_n}{b_n} < M \Rightarrow mb_n < a_n < Mb_n$$
 when $n > N$.

By the ______, we know both series converge or both diverge. □ □ 比較定理與極限比較定理只適用於「正項級數」。

Example 2 (page 730). Determine whether the following series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \frac{9^n}{3+10^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{2n^2+3n}{\sqrt{5+n^5}}$

Solution.

Exercise (page 726). Determine whether the following series converges or diverges.

(a)
$$\sum_{n=1}^{\infty} \left(1 + \frac{1}{n}\right)^2 e^{-n}$$
 (b) $\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$ (c) $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n}$.

§11.4-2

Estimating Sums, page 730

If we have used the Comparison Test to show that a series $\sum_{n=1}^{\infty} a_n$ converges by comparison with a series $\sum_{n=1}^{\infty} b_n$, then we may be able to estimate the sum $\sum_{n=1}^{\infty} a_n$ by comparing remainders.

Consider the remainder $R_n = s - s_n = a_{n+1} + a_{n+2} + \cdots$ and $T_n = t - t_n = b_{n+1} + b_{n+2} + \cdots$. Since $a_n \leq b_n$ for all n, we have $R_n \leq T_n$.

- (1) If $\sum_{n=1}^{\infty} b_n$ is a *p*-series, we can estimate its remainder T_n as in Section 11.3.
- (2) If $\sum_{n=1}^{\infty} b_n$ is a geometric series, we can sum it exactly.

Example 3 (page 730). Use the sum of the first 100 terms to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^3+1}$. Estimate the error involved in this approximation. **Solution.**

Example 4 (page 731). Use $\sum_{n=1}^{10} \frac{\cos^2 n}{5^n} \doteq 0.07393$ to estimate the error of the sum of the series $\sum_{n=1}^{\infty} \frac{\cos^2 n}{5^n}$. Solution.

Exercise. Use $\sum_{n=1}^{10} \frac{1}{3^n + 4^n} \doteq 0.19788$ to estimate the error of the sum of the series $\sum_{n=1}^{\infty} \frac{1}{3^n + 4^n}$.

Appendix

Example (TA) 5 (page 732).

- (a) Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms and $\sum_{n=1}^{\infty} b_n$ is convergent. Show that if $\lim_{n \to \infty} \frac{a_n}{b_n} = 0$, then $\sum_{n=1}^{\infty} a_n$ is also convergent.
- (b) Suppose that $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are series with positive terms and $\sum_{n=1}^{\infty} b_n$ is divergent. Show that if $\lim_{n \to \infty} \frac{a_n}{b_n} = \infty$, then $\sum_{n=1}^{\infty} a_n$ is also divergent.
- (c) Determine whether the following series converges or diverges.

(1)
$$\sum_{n=1}^{\infty} \frac{\ln n}{n^3}$$
 (2) $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n} e^n}$ (3) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$ (4) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

Solution.