11．4 The Comparison Tests（page 727）

The Comparison Test（page 727）．Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms and $a_{n} \leq b_{n}$ for all n ．
（a）If $\sum_{n=1}^{\infty} b_{n}$ is convergent，then $\sum_{n=1}^{\infty} a_{n}$ is also convergent．
（b）If $\sum_{n=1}^{\infty} a_{n}$ is divergent，then $\sum_{n=1}^{\infty} b_{n}$ is also divergent．
Proof．Let $s_{n}=\sum_{k=1}^{n} a_{k}, t_{n}=\sum_{k=1}^{n} b_{k}$ ，and $t=\sum_{k=1}^{\infty} b_{k}$ ．
（a）Monotone：Since both series have positive terms，the sequences $\left\{s_{n}\right\}_{n=1}^{\infty}$ and $\left\{t_{n}\right\}_{n=1}^{\infty}$ are increasing．

Bounded：Since $a_{k} \leq b_{k}$ for all k ，we have $s_{n} \leq t_{n} \leq t$ ．
By the \qquad ，$\sum_{n=1}^{\infty} a_{n}$ converges．
（b）If $\sum_{n=1}^{\infty} a_{n}$ is divergent，then $s_{n} \rightarrow \infty$ ，thus $t_{n} \rightarrow \infty$ ．Therefore $\sum_{n=1}^{\infty} b_{n}$ diverges．

Most of time we use p－series and geometric series for the purpose of comparison．
（1）$\underline{p \text {－series：}} \sum_{n=1}^{\infty} \frac{1}{n^{p}}$ ．It is convergent if \qquad and divergent if \qquad ．
（2）geometric series：$\sum_{n=1}^{\infty} a r^{n-1}$ ．It is convergent if \qquad and divergent if \qquad ．

Example 1．Show that the series $\sum_{n=1}^{\infty} \frac{n!}{n^{n}}$ is convergent．

Solution．

Exercise．Determine the convergence of the following series：
（a）$\sum_{n=0}^{\infty} \frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n+1}+\sqrt{n}}$ ．（Hint：分子有理化）
（b）$\sum_{n=1}^{\infty} \sqrt{\sin \frac{1}{n^{3}}}$ ．（Hint： \qquad ）

Exercise．

（a）Prove that $\ln (n+1)<1+\frac{1}{2}+\cdots+\frac{1}{n}<1+\ln n$ ．
（b）Test for convergence of $\sum_{n=1}^{\infty} \frac{1}{1+\frac{1}{2}+\cdots+\frac{1}{n}}$ ．
The Limit Comparison Test（page 729）．Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms．If

$$
\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=c
$$

where c is a finite number and $c>0$ ，then either both series converge or both diverge． Proof．Let m and M be positive numbers such that $m<c<M$ ．Since $\frac{a_{n}}{b_{n}}$ is close to c for large n ，there is an integer N such that

$$
m<\frac{a_{n}}{b_{n}}<M \Rightarrow m b_{n}<a_{n}<M b_{n} \quad \text { when } n>N .
$$

By the \qquad ，we know both series converge or both diverge．比較定理與極限比較定理只適用於「正項級數」。
Example 2 （page 730）．Determine whether the following series converges or di－ verges．
（a）$\sum_{n=1}^{\infty} \frac{9^{n}}{3+10^{n}}$
（b）$\sum_{n=1}^{\infty} \frac{2 n^{2}+3 n}{\sqrt{5+n^{5}}}$ ．

Solution．

Exercise（page 726）．Determine whether the following series converges or diverges．
（a）$\sum_{n=1}^{\infty}\left(1+\frac{1}{n}\right)^{2} \mathrm{e}^{-n}$
（b）$\sum_{n=1}^{\infty} \frac{1}{n^{1+\frac{1}{n}}}$
（c）$\sum_{n=1}^{\infty} \frac{\mathrm{e}^{\frac{1}{n}}}{n}$ ．

Estimating Sums, page 730

If we have used the Comparison Test to show that a series $\sum_{n=1}^{\infty} a_{n}$ converges by comparison with a series $\sum_{n=1}^{\infty} b_{n}$, then we may be able to estimate the sum $\sum_{n=1}^{\infty} a_{n}$ by comparing remainders.

Consider the remainder $R_{n}=s-s_{n}=a_{n+1}+a_{n+2}+\cdots$ and $T_{n}=t-t_{n}=$ $b_{n+1}+b_{n+2}+\cdots$. Since $a_{n} \leq b_{n}$ for all n, we have $R_{n} \leq T_{n}$.
(1) If $\sum_{n=1}^{\infty} b_{n}$ is a p-series, we can estimate its remainder T_{n} as in Section 11.3.
(2) If $\sum_{n=1}^{\infty} b_{n}$ is a geometric series, we can sum it exactly.

Example 3 (page 730). Use the sum of the first 100 terms to approximate the sum of the series $\sum_{n=1}^{\infty} \frac{1}{n^{3}+1}$. Estimate the error involved in this approximation.

Solution.

Example 4 (page 731). Use $\sum_{n=1}^{10} \frac{\cos ^{2} n}{5^{n}} \doteq 0.07393$ to estimate the error of the sum of the series $\sum_{n=1}^{\infty} \frac{\cos ^{2} n}{5^{n}}$.

Solution.

Exercise. Use $\sum_{n=1}^{10} \frac{1}{3^{n}+4^{n}} \doteq 0.19788$ to estimate the error of the sum of the series $\sum_{n=1}^{\infty} \frac{1}{3^{n}+4^{n}}$.

Appendix

Example (TA) 5 (page 732).
(a) Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms and $\sum_{n=1}^{\infty} b_{n}$ is convergent. Show that if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=0$, then $\sum_{n=1}^{\infty} a_{n}$ is also convergent.
(b) Suppose that $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are series with positive terms and $\sum_{n=1}^{\infty} b_{n}$ is divergent. Show that if $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\infty$, then $\sum_{n=1}^{\infty} a_{n}$ is also divergent.
(c) Determine whether the following series converges or diverges.
(1) $\sum_{n=1}^{\infty} \frac{\ln n}{n^{3}}$
(2) $\sum_{n=1}^{\infty} \frac{\ln n}{\sqrt{n} \mathrm{e}^{n}}$
(3) $\sum_{n=2}^{\infty} \frac{1}{\ln n}$
(4) $\sum_{n=1}^{\infty} \frac{\ln n}{n}$

Solution.

