11．2 Series（page 707）

Definition 1 （page 707－708）．Let $\left\{a_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence．
（1）The partial sums（部份和）of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is defined as

$$
s_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\cdots+a_{n} .
$$

These partial sums form a new sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$（部份和數列）．
（2）An infinite series（or just a series 無窮級數）is denoted by

$$
\sum_{n=1}^{\infty} a_{n} \stackrel{\text { def. }}{=} \lim _{n \rightarrow \infty} \sum_{k=1}^{n} a_{k}=\lim _{n \rightarrow \infty} s_{n}=\lim _{n \rightarrow \infty}\left(a_{1}+a_{2}+\cdots+a_{n}\right)
$$

which means the limit of the partial sums of the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ ．
（3）If the limit $\lim _{n \rightarrow \infty} s_{n}=s$ exists（or convergent）as a finite number，then we say the series $\sum_{n=1}^{\infty} a_{n}$ convergent（收斂），and the number s is called the sum of the infinite series $\sum_{n=1}^{\infty} a_{n}$（級數和）。
（4）If the sequence $\left\{s_{n}\right\}_{n=1}^{\infty}$ is divergent，then the series $\sum_{n=1}^{\infty} a_{n}$ is called divergent．
Example 2 （page 708）．In this chapter，we are not interested in the infinite arith－ metic series（等差級數，算數級數）：

$$
\sum_{n=1}^{\infty}(a+(n-1) d) \stackrel{\text { def. }}{=} a+(a+d)+(a+2 d)+\cdots+(a+(n-1) d)+\cdots
$$

where each term is obtained from the preceding one by adding it by the common difference（公差）d ．This is because the arithmetic series is convergent if and only if $a=0$ and $d=0$ ．

Example 3 （page 709）．The geometric series（等比級數，幾何級數）is an infinite series

$$
\sum_{n=1}^{\infty} a r^{n-1} \stackrel{\text { def. }}{=} a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}+\cdots, \quad a \neq 0
$$

Each term is obtained from the preceding one by multiplying it by the common ratio （公比）r ．We will discuss the convergence or divergence of the geometric series in the following theorem．

Theorem 4 (page 710). The geometric series

$$
\sum_{n=1}^{\infty} a r^{n-1}=a+a r+a r^{2}+a r^{3}+\cdots+a r^{n-1}+\cdots, \quad a \neq 0
$$

is convergent if $|r|<1$ and its sum is

$$
\sum_{n=1}^{\infty} a r^{n-1}=\frac{a}{1-r} \quad \text { if } \quad|r|<1
$$

If $|r| \geq 1$, the geometric series is divergent.
Proof.

Exercise (page 711). Discuss the series $\sum_{n=0}^{\infty} x^{n} \stackrel{\text { def. }}{=} 1+x+x^{2}+x^{3}+\cdots+x^{n}+\cdots$ for $x \in \mathbb{R}$. If the series is convergent, find the sum of the series.

Example 5. Write the number $0 . \overline{142857}=0.142857142857 \ldots$ as a ratio of integers (fraction).

Solution.

Exercise. Write the number $0 . \overline{285714}, 2.3 \overline{17}$, and $0 . \overline{9}$ as a ratio of integers.

Exercise（page 712）．
（a）Show that the series $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ is convergent，and find its sum．
（b）Show that the Euler series $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ is convergent．
Hint：（a）$\frac{1}{n(n+1)}=$ \qquad （b）For $n>2, \frac{1}{n^{2}} \leq$ \qquad
Theorem 6 （page 713）．If the series $\sum_{n=1}^{\infty} a_{n}$ is convergent，then $\lim _{n \rightarrow \infty} a_{n}=0$ ． Proof．

Test for Divergence（page 713）．If $\lim _{n \rightarrow \infty} a_{n}$ does not exist or if $\lim _{n \rightarrow \infty} a_{n} \neq 0$ ，then the series $\sum_{n=1}^{\infty} a_{n}$ is divergent．

Example 7 （page 713）．The harmonic series（調和級數）is an infinite series

$$
\sum_{n=1}^{\infty} \frac{1}{n} \stackrel{\text { def. }}{=} 1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}+\cdots
$$

Show that it is divergent．
Proof．

若 $\lim _{n \rightarrow \infty} a_{n}=0$ ，則級數 $\sum_{n=1}^{\infty} a_{n}$ 收斂與否仍舊無法判定。
例如：比較調和級數 $\sum_{n=1}^{\infty} \frac{1}{n}$ ，等比級數 $\sum_{n=1}^{\infty} a r^{n-1}$ 或歐拉級數 $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ 。

Theorem 8 （page 714）．If $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$ are convergent series，then so are the series $\sum_{n=1}^{\infty} c a_{n}($ where c is a constant $), \sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ ，and $\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)$ ，and
（a）$\sum_{n=1}^{\infty} c a_{n}=c \sum_{n=1}^{\infty} a_{n}$ ．
（b）$\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=\sum_{n=1}^{\infty} a_{n}+\sum_{n=1}^{\infty} b_{n}$ ．
（c）$\sum_{n=1}^{\infty}\left(a_{n}-b_{n}\right)=\sum_{n=1}^{\infty} a_{n}-\sum_{n=1}^{\infty} b_{n}$ ．
各別的級數和 $\sum_{n=1}^{\infty} a_{n}$ 與 $\sum_{n=1}^{\infty} b_{n}$ 之「收斂」很重要。各項相加後得到的新的級數和與各別的級數和再相加相同。
\square 注意！$\sum_{n=1}^{\infty} a_{n} b_{n} \neq \sum_{n=1}^{\infty} a_{n} \cdot \sum_{n=1}^{\infty} b_{n}$ 。兩數列相乘的級數和不會等於各別級數和再相乘！級數和的收斂與否和前面有限項無關。
\square 若 $\sum_{n=1}^{\infty} a_{n}$ 收斂而 $\sum_{n=1}^{\infty} b_{n}$ 發散，則 $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ 發散。（習題 11．2，\＃83。）
\square 若 $\sum_{n=1}^{\infty} a_{n}$ 與 $\sum_{n=1}^{\infty} b_{n}$ 發散，則 $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)$ 不一定收斂也不一定發散。（習題 11．2，\＃84。）
Example（TA） 9 （page 715－716）．Determine whether the series is convergent or divergent．If it is convergent，find its sum．
（a）$\sum_{n=1}^{\infty} \sqrt[n]{2}$
（b）$\sum_{n=1}^{\infty}\left(\frac{1}{\mathrm{e}^{n}}+\frac{1}{n(n+1)}\right)$
（c）$\sum_{n=2}^{\infty} \frac{1}{n^{3}-n}$ ．

Solution．

Exercise (page 715-716). Determine whether the series is convergent or divergent. If it is convergent, find its sum.
(a) $\sum_{n=1}^{\infty} \frac{1+2^{n}}{3^{n}}$
(b) $\sum_{n=1}^{\infty}\left(\frac{3}{5^{n}}+\frac{2}{n}\right)$
(c) $\sum_{n=1}^{\infty} \ln \left(\frac{n}{n+1}\right)$.

Example (TA) 10 (page 718).

(a) A sequence $\left\{a_{n}\right\}$ is defined recursively by the equation $a_{n}=\frac{1}{2}\left(a_{n-1}+a_{n-2}\right)$ for $n \geq 3$, where a_{1} and a_{2} can be any real numbers. Experiment with various values of a_{1} and a_{2} and use your calculator to guess the limit of the sequence.
(b) Find $\lim _{n \rightarrow \infty} a_{n}$ in terms of a_{1} and a_{2} by expressing $a_{n+1}-a_{n}$ in terms of $a_{2}-a_{1}$ and summing a series.

Solution.

Exercise (page 719). Consider the series $\sum_{n=1}^{\infty} \frac{n}{(n+1)!}$.
(a) Find the partial sums s_{1}, s_{2}, s_{3}, an s_{4}. Do you recognize the denominators? Use the patten to guess a formula for s_{n}.
(b) Use mathematical induction to prove your guess.
(c) Show that the given infinite series is convergent, and find its sum.

