Chapter 11 Infinite Sequences and Series

11．1 Sequences（page 694）

Definition 1 （page 694）．
（1）A sequence（數列）is a list of numbers written in a definite order：

$$
a_{1}, a_{2}, a_{3}, a_{4}, \ldots, a_{n}, \ldots
$$

The number a_{1} is called the first term，a_{2} is the second term，and in general a_{n} is the n－th term．
（2）An infinite sequence（無䆗數列）is a sequence that each term a_{n} has a successor a_{n+1} ．
（3）The sequence $\left\{a_{1}, a_{2}, a_{3}, \ldots\right\}$ is also denoted by $\left\{a_{n}\right\}$ or $\left\{a_{n}\right\}_{n=1}^{\infty}$ ．
Example 2 （page 694）．Some sequences can be defined by giving a formula for the n－th term．There are three methods to describe a sequence．Notice that n doesn＇t have to start at 1 ．
（a）$\left\{\frac{n}{n+1}\right\}_{n=1}^{\infty}$ ，
$a_{n}=\frac{n}{n+1}$,
$\left\{\frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, \frac{n}{n+1}, \ldots\right\}$ ．
（b）$\left\{\frac{(-1)^{n}(n+1)}{3^{n}}\right\}_{n=1}^{\infty}, \quad a_{n}=\frac{(-1)^{n}(n+1)}{3^{n}}$ ， $\left\{-\frac{2}{3}, \frac{3}{9},-\frac{4}{27}, \ldots, \frac{(-1)^{n}(n+1)}{3^{n}}, \ldots\right\}$ ．
（c）$\{\sqrt{n-3}\}_{n=3}^{\infty}, \quad a_{n}=\sqrt{n-3}, n \geq 3$, $\{0,1, \sqrt{2}, \sqrt{3}, \ldots, \sqrt{n-3}, \ldots\}$ ．
（d）$\left\{\cos \frac{n \pi}{6}\right\}_{n=0}^{\infty}$ ，
$a_{n}=\cos \frac{n \pi}{6}, n \geq 0$,
$\left\{1, \frac{\sqrt{3}}{2}, \frac{1}{2}, 0, \ldots, \cos \frac{n \pi}{6}, \ldots\right\}$ ．

Example 3 （page 695）．Here are some sequences that don＇t have a simple defining equation．
（a）The Fibonacci sequence（費波那契數列）$\left\{f_{n}\right\}$ is defined recursively by the con－ ditions

$$
f_{1}=f_{2}=1, \quad f_{n}=f_{n-1}+f_{n-2}, \quad n \geq 3
$$

The first few terms are $\{1,1,2,3,5,8,13,21,34,55, \ldots\}$ ．This sequence arose when the 13th－century Italian mathematician known as Fibonacci solved a problem concerning the breeding of rabbits．
（b）If we let a_{n} be the digit in the n－th decimal place of the number $\sqrt{2}$ ，then $\left\{a_{n}\right\}$ is a well－defined sequence whose first few terms are $\{4,1,4,2,1,3,5,6,2, \ldots\}$ ．

Definition 4 （page 696）．（數列極限之收斂或發散）
（1）A sequence $\left\{a_{n}\right\}$ has the limit L and we write

$$
\lim _{n \rightarrow \infty} a_{n}=L \quad \text { or } \quad a_{n} \rightarrow L \quad \text { as } n \rightarrow \infty
$$

if we can make the terms a_{n} as close to L as we like by taking n sufficiently large．
（2）If $\lim _{n \rightarrow \infty} a_{n}$ exists，we say the sequence converges（or is convergent，收斂）．Oth－ erwise，we say the sequence diverges（or is divergent，發散）．
（3）If a_{n} becomes large as n becomes large，we use the notation $\lim _{n \rightarrow \infty} a_{n}=\infty$ ．
Theorem 5．If $\lim _{n \rightarrow \infty} a_{n}$ exists，then it is unique．
Property 6 （Limit Laws for Sequences，page 697）．If $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent sequences and c is a constant，then
（1） $\lim _{n \rightarrow \infty}\left(a_{n}+b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}+\lim _{n \rightarrow \infty} b_{n}$ ．
（2） $\lim _{n \rightarrow \infty}\left(a_{n}-b_{n}\right)=\lim _{n \rightarrow \infty} a_{n}-\lim _{n \rightarrow \infty} b_{n}$ ．
（3） $\lim _{n \rightarrow \infty} c a_{n}=c \lim _{n \rightarrow \infty} a_{n}$ ．In particular， $\lim _{n \rightarrow \infty} c=c$ ．
（4） $\lim _{n \rightarrow \infty}\left(a_{n} b_{n}\right)=\lim _{n \rightarrow \infty} a_{n} \cdot \lim _{n \rightarrow \infty} b_{n}$ ．
（5） $\lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}}=\frac{\lim _{n \rightarrow \infty} a_{n}}{\lim _{n \rightarrow \infty} b_{n}}$ if $\lim _{n \rightarrow \infty} b_{n} \neq 0$ ．
（6） $\lim _{n \rightarrow \infty} a_{n}^{p}=\left(\lim _{n \rightarrow \infty} a_{n}\right)^{p}$ if $p>0$ and $a_{n}>0$ ．
The Squeeze Theorem（夾擠定理，page 698）．If $a_{n} \leq b_{n} \leq c_{n}$ for $n \geq n_{0}$ and $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} c_{n}=L$ ，then $\lim _{n \rightarrow \infty} b_{n}=L$ ．

Theorem 7．If $\lim _{n \rightarrow \infty} a_{n}=L$ ，then the limit of any subsequences $\lim _{k \rightarrow \infty} a_{n_{k}}=L$ ．極限若存在，真相只有一個！數列的極限與函數的極限一樣有「四則運算」以及「夾擠定理」。夾擠定理，只要確定某一項之後三個數列有大小關係即可，和前面有限項的大小無關。子數列存在性定理一般的應用是考慮其否逆命題－證明原數列極限不存在。

Theorem 8 （page 698）．If $\lim _{n \rightarrow \infty}\left|a_{n}\right|=0$ ，then $\lim _{n \rightarrow \infty} a_{n}=0$ ．
Proof．Since \qquad ，by the \qquad ，we have $\lim _{n \rightarrow \infty} a_{n}=0$ ．

Theorem 9 （page 697）．If $\lim _{x \rightarrow \infty} f(x)=L$ and $f(n)=a_{n}$ when n is an integer，then $\lim _{n \rightarrow \infty} a_{n}=L$ ．
Theorem 10 （page 699）．If $\lim _{n \rightarrow \infty} a_{n}=L$ and the function f is continuous at L ， then

$$
\lim _{n \rightarrow \infty} f\left(a_{n}\right)=f(L)
$$

Figure 1：Relations between functions and sequences．有了定理 9，定理 10 ，就可以將上學期學過函數的極限「應用」到數列的極限，超好用！定理 10 意義：「連續函數」才可以和數列的「極限」交換順序。若 $\lim _{n \rightarrow \infty} a_{n}=0$ ，則 $\lim _{n \rightarrow \infty}\left|a_{n}\right|=\left|\lim _{n \rightarrow \infty} a_{n}\right|=0$ 。（因爲絕對值函數爲連續函數）
Example 11．Discuss the convergence or divergence of the following sequences：
（a）$a_{n}=\frac{-n^{2}+1}{2 n^{2}+3 n}$
（b）$b_{n}=\frac{n!}{n^{n}}$
（c）$c_{n}=\frac{(-1)^{n}}{n}$
（d）$d_{n}=\frac{\ln n}{n}$
（e）$e_{n}=\sin \left(\frac{\pi}{n}\right)$ ．

Solution．

Exercise（page 704）．Determine whether the sequence converges or diverges．If it converges，find the limit．（a）$a_{n}=\frac{n^{2}}{\sqrt{n^{3}+4 n}}$（b）$b_{n}=\frac{(2 n-1)!}{(2 n+1)!} \quad$（c）$c_{n}=\frac{\cos ^{2} n}{2^{n}}$ $d_{n}=\left(1+\frac{2}{n}\right)^{n}$
（e）$e_{n}=n-\sqrt{n+1} \sqrt{n+3}$ ．

Theorem 12 （page 700）．The sequence $\left\{r^{n}\right\}_{n=1}^{\infty}$ is convergent if $-1<r \leq 1$ and divergent for all other values of r ．Furthermore，we have

$$
\lim _{n \rightarrow \infty} r^{n}= \begin{cases}0 & \text { if }-1<r<1 \\ 1 & \text { if } r=1\end{cases}
$$

Proof．Consider $f(x)=a^{x}$ ．We know $\lim _{x \rightarrow \infty} a^{x}=\infty$ if $a>1 ; \lim _{x \rightarrow \infty} a^{x}=0$ if $0<a<1$ ．
（1）Let $a=r$ ，we get
（2）If $\underline{r=1}$ ，
（3）If $\underline{r=0}$ ，
（4）If $\underline{-1<r<0}$ ，
（5）If $\underline{r=-1}$ ，
（6）If $\underline{r<-1}$ ，

Exercise．Show that $\lim _{n \rightarrow \infty} n r^{n}=0$ if $|r|<1$ ．
Definition 13 （page 700）．A sequence $\left\{a_{n}\right\}$ is called increasing（遞增）if $a_{n}<a_{n+1}$ for all $n \geq 1$ ，that is，$a_{1}<a_{2}<a_{3}<\cdots$ ．It is called decreasing（遞減）if $a_{n}>a_{n+1}$ for all $n \geq 1$ ．A sequence is monotonic（單調）if it is either increasing or decreasing．

Definition 14 （page 701）．A sequence $\left\{a_{n}\right\}$ is bounded above（有上界）if there is a number M such that $a_{n} \leq M$ for all $n \geq 1$ ．It is bounded below（有下界）if there is a number m such that $m \leq a_{n}$ for all $n \geq 1$ ．If it is bounded above and below，then $\left\{a_{n}\right\}$ is a bounded sequence（有界數列）．

Monotonic Sequence Theorem（page 702）．Every bounded，monotonic sequence is convergent．（單調有界數列必收斂。）
\qquad
Figure 2：Monotonic sequence theorem．有界數列未必收斂，例如： \qquad。單調數列未必收斂，例如： \qquad －定理證明要用到實數的完備性公設（completeness axiom）。

Example 15 （page 703）．Investigate the sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ defined by the recurrence relation（遞迴關係）：$a_{1}=2, a_{n+1}=\frac{1}{2}\left(a_{n}+6\right)$ for $n=1,2,3, \ldots$ ．

Solution．Monotone：We claim：$a_{n+1}>a_{n}$ for all $n \in \mathbb{N}$ ．
（1）When $\underline{n=1}$ ，
（2）Assume that it is true for $\underline{n=k}$ ，that is，$a_{k+1}>a_{k}$ ．
（3）When $\underline{n=k+1}$ ，
（4） By \qquad ，we know $\left\{a_{n}\right\}$ is monotone．

Bounded：We claim：$a_{n}<6$ for all $n \in \mathbb{N}$ ．
（1）When $\underline{n=1}$ ，
（2）Assume that it is true for $\underline{n=k}$ ，that is，$a_{k}<6$ ．
（3）When $n=k+1$ ，
（4）By \qquad ，we know $\left\{a_{n}\right\}$ is bounded above by 6 ．

Limit：By \qquad ，we know $\lim _{n \rightarrow \infty} a_{n}$ exists．Let $\lim _{n \rightarrow \infty} a_{n}=L$ ． Since

Example（TA） 16 （page 705）．A sequence $\left\{a_{n}\right\}_{n=1}^{\infty}$ is given by $a_{1}=\sqrt{2}, a_{n+1}=$ $\sqrt{2+a_{n}}$ ．Show that $\left\{a_{n}\right\}$ is increasing，bounded above by $3, \lim _{n \rightarrow \infty} a_{n}$ exists，and find $\lim _{n \rightarrow \infty} a_{n}$ ．

Solution．

Exercise（page 705）．Show that the sequence defined by $a_{1}=1, a_{n+1}=3-\frac{1}{a_{n}}$ is increasing and $a_{n}<3$ for all n ．Deduce that $\left\{a_{n}\right\}$ is convergent and find its limit．
Example（TA） $\mathbf{1 7}$（page 706）．Let $a_{n}=\left(1+\frac{1}{n}\right)^{n}$ ．Show that $\lim _{n \rightarrow \infty} a_{n}$ exists． Solution．

Exercise（page 706）．Let a and b be positive numbers with $a>b$ ．Let a_{1} be their arithmetic mean（算術平均）and b_{1} their geometric mean（幾何平均）：

$$
a_{1}=\frac{a+b}{2}, \quad b_{1}=\sqrt{a b} .
$$

Repeat this process so that，in general

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}} .
$$

（a）Use mathematical induction（數學歸納法）to show that $a_{n}>a_{n+1}>b_{n+1}>b_{n}$ ．
（b）Deduce that both $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$ are convergent．
（c）Show that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} b_{n}$ ．Gauss called the common value of these limits the arithmetic－geometric mean of the numbers a and b ．

