
Chapter 11 Infinite Sequences and Series

11.1 Sequences (page 694)

Definition 1 (page 694).

(1) A sequence (數列) is a list of numbers written in a definite order:

a1, a2, a3, a4, . . . , an, . . . .

The number a1 is called the first term, a2 is the second term, and in general

an is the n-th term.

(2) An infinite sequence (無窮數列) is a sequence that each term an has a successor

an+1.

(3) The sequence {a1, a2, a3, . . .} is also denoted by {an} or {an}∞n=1.

Example 2 (page 694). Some sequences can be defined by giving a formula for the

n-th term. There are three methods to describe a sequence. Notice that n doesn’t

have to start at 1.

(a) { n
n+1

}∞n=1, an = n
n+1

, {1
2
, 2
3
, 3
4
, . . . , n

n+1
, . . .}.

(b) { (−1)n(n+1)
3n

}∞n=1, an = (−1)n(n+1)
3n

, {−2
3
, 3
9
,− 4

27
, . . . ,

(−1)n(n+1)
3n

, . . .}.

(c) {
√
n− 3}∞n=3, an =

√
n− 3, n ≥ 3, {0, 1,

√
2,
√
3, . . . ,

√
n− 3, . . .}.

(d) {cos nπ
6
}∞n=0, an = cos nπ

6
, n ≥ 0, {1,

√
3
2
, 1
2
, 0, . . . , cos nπ

6
, . . .}.

Example 3 (page 695). Here are some sequences that don’t have a simple defining

equation.

(a) The Fibonacci sequence (費波那契數列) {fn} is defined recursively by the con-

ditions

f1 = f2 = 1, fn = fn−1 + fn−2, n ≥ 3.

The first few terms are {1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .}. This sequence arose

when the 13th-century Italian mathematician known as Fibonacci solved a

problem concerning the breeding of rabbits.

(b) If we let an be the digit in the n-th decimal place of the number
√
2, then {an}

is a well-defined sequence whose first few terms are {4, 1, 4, 2, 1, 3, 5, 6, 2, . . .}.
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Definition 4 (page 696). (數列極限之收斂或發散)

(1) A sequence {an} has the limit L and we write

lim
n→∞

an = L or an → L as n → ∞

if we can make the terms an as close to L as we like by taking n sufficiently

large.

(2) If lim
n→∞

an exists, we say the sequence converges (or is convergent, 收斂). Oth-

erwise, we say the sequence diverges (or is divergent, 發散).

(3) If an becomes large as n becomes large, we use the notation lim
n→∞

an = ∞.

Theorem 5. If lim
n→∞

an exists, then it is unique.

Property 6 (Limit Laws for Sequences, page 697). If {an} and {bn} are convergent

sequences and c is a constant, then

(1) lim
n→∞

(an + bn) = lim
n→∞

an + lim
n→∞

bn.

(2) lim
n→∞

(an − bn) = lim
n→∞

an − lim
n→∞

bn.

(3) lim
n→∞

c an = c lim
n→∞

an. In particular, lim
n→∞

c = c.

(4) lim
n→∞

(anbn) = lim
n→∞

an · lim
n→∞

bn.

(5) lim
n→∞

an
bn

=
lim

n→∞

an

lim
n→∞

bn
if lim

n→∞
bn 6= 0.

(6) lim
n→∞

apn =
(

lim
n→∞

an

)p

if p > 0 and an > 0.

The Squeeze Theorem (夾擠定理, page 698). If an ≤ bn ≤ cn for n ≥ n0 and

lim
n→∞

an = lim
n→∞

cn = L, then lim
n→∞

bn = L.

Theorem 7. If lim
n→∞

an = L, then the limit of any subsequences lim
k→∞

ank
= L.

� 極限若存在, 真相只有一個!

� 數列的極限與函數的極限一樣有 「四則運算」 以及 「夾擠定理」。

� 夾擠定理, 只要確定某一項之後三個數列有大小關係即可, 和前面有限項的大小無關。

� 子數列存在性定理一般的應用是考慮其否逆命題 – 證明原數列極限不存在。

Theorem 8 (page 698). If lim
n→∞

|an| = 0, then lim
n→∞

an = 0.

Proof. Since , by the , we have lim
n→∞

an = 0.
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Theorem 9 (page 697). If lim
x→∞

f(x) = L and f(n) = an when n is an integer, then

lim
n→∞

an = L.

Theorem 10 (page 699). If lim
n→∞

an = L and the function f is continuous at L,

then

lim
n→∞

f(an) = f(L).

xx

yy

Figure 1: Relations between functions and sequences.

� 有了定理 9、 定理 10, 就可以將上學期學過函數的極限 「應用」 到數列的極限,超好用!

� 定理 10 意義:「連續函數」 才可以和數列的 「極限」 交換順序。

� 若 lim
n→∞

an = 0, 則 lim
n→∞

|an| =
∣

∣

∣
lim
n→∞

an

∣

∣

∣
= 0。 (因為絕對值函數為連續函數)

Example 11. Discuss the convergence or divergence of the following sequences:

(a) an = −n2+1
2n2+3n

(b) bn = n!
nn (c) cn = (−1)n

n
(d) dn = lnn

n
(e) en = sin(π

n
).

Solution.

Exercise (page 704). Determine whether the sequence converges or diverges. If it

converges, find the limit. (a) an = n2

√
n3+4n

(b) bn = (2n−1)!
(2n+1)!

(c) cn = cos2 n
2n

(d)

dn =
(

1 + 2
n

)n
(e) en = n−

√
n+ 1

√
n+ 3.
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Theorem 12 (page 700). The sequence {rn}∞n=1 is convergent if −1 < r ≤ 1 and

divergent for all other values of r. Furthermore, we have

lim
n→∞

rn =

{

0 if − 1 < r < 1

1 if r = 1.

Proof. Consider f(x) = ax. We know lim
x→∞

ax = ∞ if a > 1; lim
x→∞

ax = 0 if 0 < a < 1.

(1) Let a = r, we get

(2) If r = 1,

(3) If r = 0,

(4) If −1 < r < 0,

(5) If r = −1,

(6) If r < −1,

Exercise. Show that lim
n→∞

nrn = 0 if |r| < 1.

Definition 13 (page 700). A sequence {an} is called increasing (遞增) if an < an+1

for all n ≥ 1, that is, a1 < a2 < a3 < · · · . It is called decreasing (遞減) if an > an+1

for all n ≥ 1. A sequence is monotonic (單調) if it is either increasing or decreasing.

Definition 14 (page 701). A sequence {an} is bounded above (有上界) if there is a

number M such that an ≤ M for all n ≥ 1. It is bounded below (有下界) if there is

a number m such that m ≤ an for all n ≥ 1. If it is bounded above and below, then

{an} is a bounded sequence (有界數列).

Monotonic Sequence Theorem (page 702). Every bounded, monotonic sequence

is convergent. (單調有界數列必收斂。 )

x

Figure 2: Monotonic sequence theorem.

� 有界數列未必收斂, 例如: 。

� 單調數列未必收斂, 例如: 。

� 定理證明要用到實數的完備性公設 (completeness axiom)。
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Example 15 (page 703). Investigate the sequence {an}∞n=1 defined by the recurrence

relation (遞迴關係): a1 = 2, an+1 =
1
2
(an + 6) for n = 1, 2, 3, . . ..

Solution. Monotone: We claim: an+1 > an for all n ∈ N.

(1) When n = 1,

(2) Assume that it is true for n = k, that is, ak+1 > ak.

(3) When n = k + 1,

(4) By , we know {an} is monotone.

Bounded: We claim: an < 6 for all n ∈ N.

(1) When n = 1,

(2) Assume that it is true for n = k, that is, ak < 6.

(3) When n = k + 1,

(4) By , we know {an} is bounded above by 6.

Limit: By , we know lim
n→∞

an exists. Let lim
n→∞

an = L.

Since

Example (TA) 16 (page 705). A sequence {an}∞n=1 is given by a1 =
√
2, an+1 =√

2 + an. Show that {an} is increasing, bounded above by 3, lim
n→∞

an exists, and find

lim
n→∞

an.

Solution.
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Exercise (page 705). Show that the sequence defined by a1 = 1, an+1 = 3 − 1
an

is

increasing and an < 3 for all n. Deduce that {an} is convergent and find its limit.

Example (TA) 17 (page 706). Let an =
(

1 + 1
n

)n
. Show that lim

n→∞
an exists.

Solution.

Exercise (page 706). Let a and b be positive numbers with a > b. Let a1 be their

arithmetic mean (算術平均) and b1 their geometric mean (幾何平均):

a1 =
a + b

2
, b1 =

√
ab.

Repeat this process so that, in general

an+1 =
an + bn

2
, bn+1 =

√

anbn.

(a) Use mathematical induction (數學歸納法) to show that an > an+1 > bn+1 > bn.

(b) Deduce that both {an} and {bn} are convergent.

(c) Show that lim
n→∞

an = lim
n→∞

bn. Gauss called the common value of these limits

the arithmetic-geometric mean of the numbers a and b.
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