10.4 Areas and Length in Polar Coordinates (page 669)

In this section, we develop the formula for the area of the region whose boundary is given by a polar equation.

Example 1 (page 669). The area of a sector of a circle with the radius r and the radian θ is A =.

Example 2 (page 669). Find the area of a region \mathcal{R} bounded by the polar curve $r = r(\theta)$ and by rays $\theta = a$ and $\theta = b$, where $r(\theta)$ is a positive continuous function and $0 < b - a \leq 2\pi$.

Solution.

Example 3 (page 670). Find the area enclosed by one loop of the four-leaved rose $r = \cos 2\theta$.

Solution.

Example 4 (page 671). Find the area of the region \mathcal{R} bounded by curves with polar equations $r = f(\theta), r = g(\theta), \theta = a$, and $\theta = b$, where $f(\theta) \ge g(\theta) \ge 0$ and $0 < b - a \le 2\pi$.

Solution.

To find *all* points of intersection of two polar curves, it is recommended that you draw the graphs of both curves.

Example 5 (page 671). Find all points of intersection of the curves $r = \cos 2\theta$ and $r = \frac{1}{2}$.

Solution.

Arc Length, page 671

To find the length of a polar curve $r = r(\theta), a \le \theta \le b$, we regard θ as a parameter and write the parameter equations of the curves as

$$\begin{cases} x = r \cos \theta = r(\theta) \cos \theta \\ y = r \sin \theta = r(\theta) \sin \theta. \end{cases}$$

Then using the Product Rule and differentiating with respect to θ , we obtain

$$\frac{\mathrm{d}x}{\mathrm{d}\theta} = \frac{\mathrm{d}y}{\mathrm{d}\theta} =$$

 \mathbf{SO}

$$\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^2 + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^2 = (r'(\theta))^2 \cos^2 \theta - 2r \cdot (r'(\theta))^2 \cos \theta \sin \theta + r^2 \sin^2 \theta + (r'(\theta))^2 \sin^2 \theta + 2r \cdot (r'(\theta))^2 \sin \theta \cos \theta + r^2 \cos^2 \theta$$

Assuming that $f'(\theta)$ is continuous, we can write the arc length as

$$L = \int_{a}^{b} \sqrt{\left(\frac{\mathrm{d}x}{\mathrm{d}\theta}\right)^{2} + \left(\frac{\mathrm{d}y}{\mathrm{d}\theta}\right)^{2}} \,\mathrm{d}\theta =$$

Example 6 (page 672). Find the length of the cardioid $r = 1 + \sin \theta$. Solution.

Surface Area, page 674

The area of the surface generated by rotating the polar curve $r = f(\theta), a \le \theta \le b$ (where $f'(\theta)$ is continuous and $0 \le a < b \le \pi$) about the polar axis is

Surface area =

The area of the surface generated by rotating the polar curve $r = f(\theta), a \le \theta \le b$ (where $f'(\theta)$ is continuous and $0 \le a < b \le \pi$) about the line $\theta = \frac{\pi}{2}$ is

Surface area =

Volume

See section 6.2 and 6.3.