10.4 Areas and Length in Polar Coordinates (page 669)

In this section, we develop the formula for the area of the region whose boundary is given by a polar equation.

Example 1 (page 669). The area of a sector of a circle with the radius r and the radian θ is $A=$ \qquad .

Example 2 (page 669). Find the area of a region \mathcal{R} bounded by the polar curve $r=r(\theta)$ and by rays $\theta=a$ and $\theta=b$, where $r(\theta)$ is a positive continuous function and $0<b-a \leq 2 \pi$.

Solution.

Example 3 (page 670). Find the area enclosed by one loop of the four-leaved rose $r=\cos 2 \theta$.

Solution.

Example 4 (page 671). Find the area of the region \mathcal{R} bounded by curves with polar equations $r=f(\theta), r=g(\theta), \theta=a$, and $\theta=b$, where $f(\theta) \geq g(\theta) \geq 0$ and $0<b-a \leq 2 \pi$.

Solution.

To find all points of intersection of two polar curves, it is recommended that you draw the graphs of both curves.

Example 5 (page 671). Find all points of intersection of the curves $r=\cos 2 \theta$ and $r=\frac{1}{2}$.

Solution.

Arc Length, page 671

To find the length of a polar curve $r=r(\theta), a \leq \theta \leq b$, we regard θ as a parameter and write the parameter equations of the curves as

$$
\left\{\begin{array}{l}
x=r \cos \theta=r(\theta) \cos \theta \\
y=r \sin \theta=r(\theta) \sin \theta
\end{array}\right.
$$

Then using the Product Rule and differentiating with respect to θ, we obtain

$$
\begin{aligned}
& \frac{\mathrm{d} x}{\mathrm{~d} \theta}= \\
& \frac{\mathrm{d} y}{\mathrm{~d} \theta}=
\end{aligned}
$$

so

$$
\begin{aligned}
\left(\frac{\mathrm{d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}= & \left(r^{\prime}(\theta)\right)^{2} \cos ^{2} \theta-2 r \cdot\left(r^{\prime}(\theta)\right)^{2} \cos \theta \sin \theta+r^{2} \sin ^{2} \theta \\
& +\left(r^{\prime}(\theta)\right)^{2} \sin ^{2} \theta+2 r \cdot\left(r^{\prime}(\theta)\right)^{2} \sin \theta \cos \theta+r^{2} \cos ^{2} \theta \\
= &
\end{aligned}
$$

Assuming that $f^{\prime}(\theta)$ is continuous, we can write the arc length as

$$
L=\int_{a}^{b} \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} \theta}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} \theta}\right)^{2}} \mathrm{~d} \theta=
$$

Example 6 (page 672). Find the length of the cardioid $r=1+\sin \theta$.

Solution.

Surface Area, page 674

The area of the surface generated by rotating the polar curve $r=f(\theta), a \leq \theta \leq b$ (where $f^{\prime}(\theta)$ is continuous and $0 \leq a<b \leq \pi$) about the polar axis is

Surface area $=$

The area of the surface generated by rotating the polar curve $r=f(\theta), a \leq \theta \leq b$ (where $f^{\prime}(\theta)$ is continuous and $0 \leq a<b \leq \pi$) about the line $\theta=\frac{\pi}{2}$ is

Surface area $=$

Volume

See section 6.2 and 6.3.

