10．2 Calculus with Parametric Curves（page 649）

We now apply the methods of calculus to parametric curves．In particular，we solve problem involving tangents，area，arc length，surface area，and volume．

Tangents，page 649

Suppose f and g are differentiable functions and we want to find the tangent line at a point on the curve $x=f(t), y=g(t)$ ，where y is also a differentiable function of x ．Then the Chain Rule gives

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\mathrm{~d} x}{\mathrm{~d} t} \Rightarrow \frac{\mathrm{~d} y}{\frac{\mathrm{~d} x}{\mathrm{~d} x}}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}} \quad \text { if } \quad \frac{\mathrm{d} x}{\mathrm{~d} t} \neq 0 .
$$

We can compute the second derivative $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$ as follows：

特別注意：$\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} \neq \frac{\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}}{\frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}}$ 。

Example 1 （page 650）．

（a）Find the tangent to the cycloid $x=r(\theta-\sin \theta), y=r(1-\cos \theta)$ at the point where $\theta=\frac{\pi}{3}$ ．
（b）At what points its tangents horizontal？When is it vertical？

Solution．

Areas, page 651

We know that the area under a curve $y=F(x)$ from a to b is $A=\int_{a}^{b} F(x) \mathrm{d} x$, where $F(x) \geq 0$. If the curve is traced out once by the parameter equations $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, then we can calculate an area formula by using the Substitution Rule for Definite Integrals as follows:

$$
A=\int_{a}^{b} y \mathrm{~d} x=\int_{\alpha}^{\beta} g(t) f^{\prime}(t) \mathrm{d} t \quad \text { or } \quad \int_{\beta}^{\alpha} g(t) f^{\prime}(t) \mathrm{d} t .
$$

Example 2 (page 651). Find the area under one arch of the cycloid $x=r(\theta-$ $\sin \theta), y=r(1-\cos \theta)$.

Solution.

Arc Length, page 652

We already know how to find the length L of a curve C given in the form $y=$ $F(x), a \leq x \leq b$. If $F^{\prime}(x)$ is continuous, then

$$
L=\int_{a}^{b} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x
$$

Suppose that C can also be described by the parametric equations $x=f(t)$ and $y=g(t), \alpha \leq t \leq \beta$, where $\frac{\mathrm{d} x}{\mathrm{~d} t}=f^{\prime}(t)>0$. This means that C is traversed once, from left to right, as t increases from α to β and $f(\alpha)=a, f(\beta)=b$. Then we obtain
$L=\int_{a}^{b} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\int_{\alpha}^{\beta} \sqrt{1+\left(\frac{\mathrm{d} y / \mathrm{d} t}{\mathrm{~d} x / \mathrm{d} t}\right)^{2}} \frac{\mathrm{~d} x}{\mathrm{~d} t} \mathrm{~d} t=\int_{\alpha}^{\beta} \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t$.
The above formula is generally true even if C can't expressed in the form $y=F(x)$.
Theorem 3 (page 649). If a curve C is described by the parametric equations $x=$ $f(t), y=g(t), \alpha \leq t \leq \beta$, where f^{\prime} and g^{\prime} are continuous on $[\alpha, \beta]$ and C is traversed exactly once as t increases from α to β, then the length of C is

$$
L=\int_{\alpha}^{\beta} \sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t
$$

Example 4 (page 653). Find the length of one arch of the cycloid $x=r(\theta-$ $\sin \theta), y=r(1-\cos \theta)$.

Solution.

Surface Area, page 654

In the same way as for arc length, we can obtain a formula for surface area. If the curve given by the parametric equations $x=f(t), y=g(t), \alpha \leq t \leq \beta$, is rotated about the x-axis, where f^{\prime}, g^{\prime} are continuous and $g(t) \geq 0$, then the area of the resulting surface is given by

$$
S=\int_{\alpha}^{\beta} 2 \pi y \sqrt{\left(\frac{\mathrm{~d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t
$$

The general symbolic formulas $S=\int 2 \pi y \mathrm{~d} s$ and $S=\int 2 \pi x \mathrm{~d} s$ are still valid, but for parametric curves we use

$$
\mathrm{d} s=\sqrt{\left(\frac{\mathrm{d} x}{\mathrm{~d} t}\right)^{2}+\left(\frac{\mathrm{d} y}{\mathrm{~d} t}\right)^{2}} \mathrm{~d} t
$$

Example 5 (page 654). Show that the surface area of a sphere of radius r is $4 \pi r^{2}$.

Solution.

Volume

See section 6.2 and 6.3.

