Chapter 10 Parametric Equations and Polar Coordinates

10．1 Curves defined by parametric equations （page 640）

Definition 1 （page 640）．Suppose that x and y are both given as functions of a third variable t（called a parameter，參數）by the equations

$$
x=f(t), \quad y=g(t),
$$

（called parameter equations，參數方程）．Each value of t determines a point (x, y) ， which we can plot in a coordinate plane．As t varies，the point $(x, y)=(f(t), g(t))$ varies and traces out a curve C ，which we call a parametric curve（参數曲線）．

Sometimes t can be realized as＂time＂and we can interpret $(x, y)=(f(t), g(t))$ as the position of a particle at time t ，but in many cases，t does not necessarily represent time，it is just a variable．

Example 2．How do we express the following curves by parametric equations？
Curve

Parametric Equation

Straight line passing through $\left(x_{0}, y_{0}\right)$
Circle with center $\left(x_{0}, y_{0}\right)$ and radius $r\left\{\begin{array}{l}x= \\ y= \\ x= \\ y=\end{array}\right.$
Ellipse $\frac{\left(x-x_{0}\right)^{2}}{a^{2}}+\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$
Parabola $\left(x-x_{0}\right)^{2}=4 p\left(y-y_{0}\right)$
Hyperbola $\frac{\left(x-x_{0}\right)^{2}}{a^{2}}-\frac{\left(y-y_{0}\right)^{2}}{b^{2}}=1$
$x=$
$y=$
$x=$
$y=$
$x=$
$y=$

Example 3．Compare the following parametric equations：
（a）$(x, y)=(\cos t, \sin t), 0 \leq t \leq 2 \pi$ ．
（b）$(x, y)=(\cos t, \sin t), 0 \leq t \leq 4 \pi$ ．
（c）$(x, y)=(\cos 2 t, \sin 2 t), 0 \leq t \leq \pi$ ．
（d）$(x, y)=(\sin t, \cos t), 0 \leq t \leq 2 \pi$ ．
（e）$(x, y)=(\cos t,-\sin t), 0 \leq t \leq 2 \pi$ ．

Example 4 （page 642）．Sketch the curve $x=\sin t, y=\sin ^{2} t$ ．

Solution．

The Cycloid，page 643

Example 5 （page 643）．The curve traced out by a point P on the circumference of a circle as the circle rolls along a straight line is called a cycloid（擺線）．See Figure 1.

Figure 1：The cycloid．

If the circle has radius r and rolls along the x－axis and if one position of P is the origin，find parametric equations for the cycloid．

Solution．

There are many interesting problems related to cycloids．

Brachistochrone Problem（最速降線問題），page 644

Find the curve along which a particle will slide in the shortest time（under the influence of gravity）from a point A to a lower point B not directly beneath A ．

Figure 2：Brachistochrone Problem．

The Swiss mathematician John Bernoulli，who posed this problem in 1696， showed that among all possible curves that join A to B ，the particle will take the least time sliding from A to B if the curve is part of an inverted arch of a cycloid．

Tautochrone Problem（等時降線），page 644

The Dutch physicist Huygens had already shown that the cycloid is also the solution to the tautochrone problem：no matter where a particle P is placed on an inverted cycloid，it takes the same time to slide to the bottom．

Figure 3：Tautochrone Problem．
Huygens proposed that pendulum clocks should swing in cycloidal arcs because then the pendulum would take the same time to make a complete oscillation whether it swings through a wide or a small arc．

Graphing Devices，page 644

We can use graphing devices to sketch complicated curves．The curves shown in Figure 4 are almost impossible to produce by hand．

Figure 4：（a）$x=\sin t+\frac{1}{2} \cos 5 t+\frac{1}{4} \sin 13 t, y=\cos t+\frac{1}{2} \sin 5 t+\frac{1}{4} \cos 13 t, t \in[0,2 \pi]$ ．
（b）$x=\sin t+\frac{1}{2} \sin 5 t+\frac{1}{4} \cos 2.3 t, y=\cos t+\frac{1}{2} \cos 5 t+\frac{1}{4} \sin 2.3 t, t \in[0,20 \pi]$ ．
（c）$x=\sin t-\sin 2.3 t, y=\cos t, t \in[0,20 \pi]$ ．繁花規。

