9．5 Linear Equations（page 620）

Definition 1 （page 620）．A first－order linear differential equation（一階線性微分方程）is one that can be put into the form

$$
\begin{equation*}
\frac{\mathrm{d} y}{\mathrm{~d} x}+P(x) y=Q(x) \tag{1}
\end{equation*}
$$

where $P(x)$ and $Q(x)$ are continuous functions on a given interval．
Every first－order linear differential equation can be solved by the method of inte－ grating factor（積分因子法）．The idea comes from the Product Rule of the derivative． Suppose $I(x)$ is a differentiable function．We multiply $I(x)$ on both sides of（1）：

$$
\begin{equation*}
I(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+I(x) P(x) y=I(x) Q(x) \tag{2}
\end{equation*}
$$

We hope left hand side of equation（2）is the derivative of the product $I(x) y(x)$ ：

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}(I(x) y(x))=I(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\mathrm{d} I}{\mathrm{~d} x} y . \tag{3}
\end{equation*}
$$

Suppose that such $I(x)$ exists，then we can solve the equation（1）as follows：

$$
\frac{\mathrm{d}}{\mathrm{~d} x}(I(x) y(x))=I(x) Q(x) \Rightarrow
$$

Now we prove the existence of $I(x)$ ．Equation（3）gives

$$
I(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{\mathrm{d} I}{\mathrm{~d} x} y=I(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+I(x) P(x) y \Rightarrow \frac{\mathrm{~d} I}{\mathrm{~d} x}=I(x) P(x) \quad \text { for } \quad y \neq 0
$$

This is a separable differential equation for I ，so we can solve it：

$$
\frac{1}{I(x)} \frac{\mathrm{d} I}{\mathrm{~d} x}=P(x) \Rightarrow
$$

Hence one solution is $I(x)=\mathrm{e}^{\int P(x) \mathrm{d} x}$ ．
Conclusion（page 621）．To solve the linear differential equation $y^{\prime}+P(x) y=$ $Q(x)$ ，multiply both sides by the integrating factor（積分因子）$I(x)=\mathrm{e}^{\int P(x) \mathrm{d} x}$ and integrate both sides．務必要先將一次微分前的係數變成 1 ，再用積分因子法。

Example 2. Solve the initial value problem:

$$
\left\{\begin{array}{l}
y^{\prime}+y \sec ^{2} x=x \mathrm{e}^{-\tan x} \\
y(0)=\pi
\end{array} .\right.
$$

Solution.

Example 3.

(a) Solve the initial value problem:

$$
\left\{\begin{array}{l}
x(x+3) y^{\prime}+\left(2 x+\frac{3}{2}\right) y=x^{\frac{1}{2}}(x+3)^{\frac{1}{2}} \\
y(1)=\frac{1}{2}, \quad x>0
\end{array}\right.
$$

(b) Discuss the asymptotic behavior $\lim _{x \rightarrow \infty} y(x)$ and $\lim _{x \rightarrow 0^{+}} y(x)$.

Solution.

Application to Electric Circuits，page 599， 623.

The simple electric circuit shown in Figure 1 contains an electromotive force（電動勢）（usually a battery or generator）that produces a voltage of $E(t)$ volts (V)（電壓；單位：伏特）and a current of $I(t)$ amperes（A）（電流；單位：安培）at time t ．The circuit also contains a resistor with a resistance of R ohms（ Ω ）（電阻；單位：歐姆） and an inductor with an inductance of L henries (H)（誘導器；單位：亨利）．Ohm＇s

Figure 1：Electric circuits．
Law gives the drop in voltage due to the resistor as $R I$ ．The voltage drop due to the inductor is $L \frac{\mathrm{~d} I}{\mathrm{~d} t}$ ．One of Kirchhoff＇s laws says that the sum of the voltage drops is equal to the supplied voltage $E(t)$ ．Thus we have

$$
L \frac{\mathrm{~d} I}{\mathrm{~d} t}+R I=E(t)
$$

which is a first－order differential equation that models the current I at time t ．
Example 4 （page 623）．Suppose that the resistance is 12Ω and the inductance is 4 H ．If a battery gives a constant voltage of $E(t)=60 \sin 30 t \mathrm{~V}$ and the switch is closed when $t=0$ ．Find $I(t)$ ．

Solution．

