9．3 Separable Equations（page 599）

In this section，we examine a certain type of differential equation that can be solved explicitly．

Definition 1 （page 599）．A separable equation（分離變數型微分方程）is a first－order differential equation in which the expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$ can be factored as a function of x times a function of y ．In other words，it can be written in the form

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=g(x) f(y) \Rightarrow \frac{1}{f(y)} \frac{\mathrm{d} y}{\mathrm{~d} x}=g(x) \quad \text { if } f(y) \neq 0
$$

To solve this equation，we integrate both sides of the equations：

$$
\int \frac{1}{f(y)} \frac{\mathrm{d} y}{\mathrm{~d} x} \mathrm{~d} x=\int g(x) \mathrm{d} x \Rightarrow \int \frac{1}{f(y)} \mathrm{d} y=\int g(x) \mathrm{d} x
$$

Example 2．Solve the initial value problem：

$$
\left\{\begin{array}{l}
\left(x y^{2}+y^{2}+x+1\right) \mathrm{d} x+(y-1) \mathrm{d} y=0 \\
y(2)=0
\end{array}\right.
$$

Solution．

Example 3 （page 605）．Solve the differential equation $x y^{\prime}=y+x \mathrm{e}^{\frac{y}{x}}$ by making the change of variable $v=\frac{y}{x}$ ．

Solution．

Orthogonal Trajectories，page 603

Definition 4 （page 603）．An orthogonal trajectory（正交軌線）of a family of curves is a curve that intersects each curve of the family orthogonally，that is，at right angles．

In section 3．5，Example 6，we have list many examples：
－$x^{2}+y^{2}=r^{2}, a x+b y=0$ ．
－$x^{2}+y^{2}=a x, x^{2}+y^{2}=b y$ ．
－$y=c x^{2}, x^{2}+2 y^{2}=k$ ．
－$y=a x^{3}, x^{2}+3 y^{2}=b$ ．

Given a family of curves，we can get an orthogonal trajectory of the family by solving the differential equation．

Example 5 （page 597）．Show that the orthogonal trajectories of the family of curves $x^{2}+y^{2}=r^{2}$ is $a x+b y=0$ ．

Solution．First，we find the slope of tangent line of $x^{2}+y^{2}=r^{2}$ ：

We want to find family of curve $y(x)$ satisfies

Hence the family of curves is line passing through the origin and $a x+b y=0$ is another expression．

Example 6．Show that the orthogonal trajectories of the family of curves $x^{2}+y^{2}=$ $a x$ is $x^{2}+y^{2}=b y$ ．

Solution．

Example 7. Show that the orthogonal trajectories of the family of curves $x^{2}+y^{2}=$ $a x$ is $x^{2}+y^{2}=b y$.

Solution. We implicit differentiate $x^{2}+y^{2}=a x$ with respect to x and get $2 x+2 y y^{\prime}=$ a, so

$$
y^{\prime}=\frac{1}{2 y}(a-2 x)=\frac{1}{2 y}\left(\frac{x^{2}+y^{2}}{x}-2 x\right)=\frac{y^{2}-x^{2}}{2 x y} .
$$

We want to find a family of curves $(x, y(x))$ satisfies

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 x y}{x^{2}-y^{2}}=\frac{2 \cdot \frac{y}{x}}{1-\left(\frac{y}{x}\right)^{2}} .
$$

Let $y=v(x) x$, then $y^{\prime}=v^{\prime} x+v$ and the differential equation becomes

$$
x v^{\prime}+v=\frac{2 v}{1-v^{2}} \Rightarrow x v^{\prime}=\frac{2 v}{1-v^{2}}-v=\frac{2 v-v+v^{3}}{1-v^{2}}=\frac{v\left(v^{2}+1\right)}{1-v^{2}} .
$$

So we have

$$
\frac{1-v^{2}}{v\left(v^{2}+1\right)} v^{\prime}=\frac{1}{x} \Rightarrow \int \frac{1-v^{2}}{v\left(v^{2}+1\right)} \mathrm{d} v=\int \frac{1}{x} \mathrm{~d} x
$$

We deal with the left hand side integration

$$
\begin{aligned}
\int \frac{1-v^{2}}{v\left(v^{2}+1\right)} \mathrm{d} v & =\int\left(\frac{1}{v}+\frac{-2 v}{v^{2}+1}\right) \mathrm{d} v=\ln |v|-\ln \left|v^{2}+1\right|=\ln \left|\frac{v}{v^{2}+1}\right| \\
& =\ln \left|\frac{\frac{y}{x}}{\left(\frac{y}{x}\right)^{2}+1}\right|=\ln \left|\frac{x y}{x^{2}+y^{2}}\right|
\end{aligned}
$$

So we get

$$
\begin{aligned}
\ln \left|\frac{x y}{x^{2}+y^{2}}\right|=\ln |x|+C & \Rightarrow \ln \left|\frac{y}{x^{2}+y^{2}}\right|=C \Rightarrow|y|=C^{\prime}\left|x^{2}+y^{2}\right| \\
& \Rightarrow x^{2}+y^{2}=b y
\end{aligned}
$$

where \mathbb{R}. Hence the orthogonal trajectories of $x^{2}+y^{2}=a x$ is $x^{2}+y^{2}=b y$.

