8.2 Area of a Surface of Revolution (page 551)

In this section, we will derive the formula of the area of a surface of revolution.
Example 1 (page 551). Find the lateral surface area of a circular cylinder with radius r and height h.

Solution.

Example 2 (page 551). Find the lateral surface area of a circular cone with base radius r and slant height l.

Solution.

Example 3 (page 551). Find the lateral surface area of a band, which is a portion of a circular cone with upper radius r_{1}, lower radius r_{2}, and slant height l.

Solution.

Example 4 (page 552). Find the surface area of the surface obtained by rotating the curve $y=f(x), a \leq x \leq b$, about the x-axis. (Assume that $f \in C^{1}[a, b]$.)

Solution.

(a) Partition: $a=x_{0}<x_{1}<x_{2}<\cdots<x_{n}=b$. We have $\Delta x=x_{i}-x_{i-1}=\frac{b-a}{n}$.
(b) Approximate the curve $(x, f(x))$ by polygons $\cup_{i=1}^{n} \overline{P_{i-1} P_{i}}$, where $P_{i}=\left(x_{i}, f\left(x_{i}\right)\right)$.
(c) By the mean value theorem, the surface area is approximated by

$$
\begin{aligned}
S_{n} & =\sum_{i=1}^{n} 2 \pi\left(\frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}\right)\left|\overline{P_{i-1} P_{i}}\right| \\
& =\sum_{i=1}^{n} 2 \pi\left(\frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}\right) \sqrt{\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}+\left(x_{i}-x_{i-1}\right)^{2}} \\
& =\sum_{i=1}^{n} 2 \pi\left(f\left(x_{i}^{*}\right)+\left(f\left(x_{i}^{* *}\right)-f\left(x_{i}^{*}\right)\right)\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x
\end{aligned}
$$

where $x_{i}^{* *} \in\left[x_{i-1}, x_{i}\right]$ satisfies $f\left(x_{i}^{* *}\right)=\frac{f\left(x_{i-1}\right)+f\left(x_{i}\right)}{2}$ and $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$.
(d) When $n \rightarrow \infty$, we have

$$
\begin{aligned}
\lim _{n \rightarrow \infty} S_{n}= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi\left(f\left(x_{i}^{*}\right)+\left(f\left(x_{i}^{* *}\right)-f\left(x_{i}^{*}\right)\right)\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \\
= & \lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi f\left(x_{i}^{*}\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \\
& +\lim _{n \rightarrow \infty} \sum_{i=1}^{n} 2 \pi\left(f\left(x_{i}^{* *}\right)-f\left(x_{i}^{*}\right)\right) \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \\
= & \int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x
\end{aligned}
$$

where we need to estimate (use mean value theorem and extreme value theorem)

$$
\begin{aligned}
& \sum_{i=1}^{n} 2 \pi\left|f\left(x_{i}^{* *}\right)-f\left(x_{i}^{*}\right)\right| \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \\
\leq & \sum_{i=1}^{n} 2 \pi\left|f^{\prime}\left(x_{i}^{* * *}\right) \Delta x\right| \sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x \\
\leq & 2 \pi M \sqrt{1+M^{2}} \sum_{i=1}^{n}(\Delta x)^{2}=2 \pi M \sqrt{1+M^{2}} \sum_{i=1}^{n}\left(\frac{b-a}{n^{2}}\right)^{2} \\
= & 2 \pi M \sqrt{1+M^{2}}(b-a)^{2} \cdot \frac{1}{n} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$.

Definition 5．Surface area（表面積）of the surface obtained by rotating the curve $y=f(x), a \leq x \leq b$ ，about x－axis is

$$
S=\int_{a}^{b} 2 \pi f(x) \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x=\int_{a}^{b} 2 \pi y \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x
$$

Recall that the differential of the arc length function is

$$
\begin{equation*}
(\mathrm{d} s)^{2}=(\mathrm{d} x)^{2}+(\mathrm{d} y)^{2} \Rightarrow \mathrm{~d} s=\sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y \tag{1}
\end{equation*}
$$

If the curve is described as $x=g(y), c \leq y \leq d$ ，then the formula for surface area （rotating about x－axis）becomes

$$
\begin{equation*}
S=\int_{c}^{d} 2 \pi y \sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y \tag{2}
\end{equation*}
$$

Formula（1）and（2）can be formally written as

$$
\int 2 \pi y \mathrm{~d} s .
$$

For rotation about the y－axis，the surface area formula（formally）becomes

$$
S=\int 2 \pi x \mathrm{~d} s, \quad \text { where } \quad \mathrm{d} s=\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x=\sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y
$$

表面積公式：周長乘以弧長的積分。
Example 6．Find the area of surface obtained by rotating $y=\sin x, 0 \leq x \leq \pi$ ， about the x－axis．

Solution．

Example 7 (page 556). Consider the region $\mathcal{R}=\left\{(x, y) \mid x \geq 1,0 \leq y \leq \frac{1}{x}\right\}$ rotating about the x-axis.
(a) Show that the volume of the resulting solid is finite.
(b) Show that the surface area is infinite. (The surface is called Gabriel's horn.)

Solution.

