Chapter 8 Further Applications of Integration

8.1 Arc Length (page 544)

The Arc Length Formula (page 544). If f^{\prime} is continuous on $[a, b]$, then the length of the curve $y=f(x), a \leq x \leq b$, is

$$
\begin{equation*}
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}} \mathrm{~d} x=\int_{a}^{b} \sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}} \mathrm{~d} x \tag{1}
\end{equation*}
$$

If a curve has the equation $x=g(y), c \leq y \leq d$, and $g^{\prime}(y)$ is continuous, then by interchanging the roles of x and y, we obtain the following formula for its length:

$$
\begin{equation*}
L=\int_{c}^{d} \sqrt{1+\left(g^{\prime}(y)\right)^{2}} \mathrm{~d} y=\int_{c}^{d} \sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y \tag{2}
\end{equation*}
$$

Proof. Suppose that a curve C is defined by the equation $y=f(x)$, where $f(x)$ is continuous and $a \leq x \leq b$. We obtain a polygonal approximation to C by dividing the interval $[a, b]$ into n subintervals with endpoints $x_{0}, x_{1}, \ldots, x_{n}$ and equal width Δx. If $y_{i}=f\left(x_{i}\right)$, then the point $P_{i}\left(x_{i}, y_{i}\right)$ lies on C and the polygon with vertices $P_{0}, P_{1}, \ldots, P_{n}$ is an approximation to C.

Figure 1: We use the length of inscribed polygons to approximate the length of C.
We define the length L (弧長) of the curve C with equation $y=f(x), a \leq x \leq b$, as the limit of the lengths of these inscribed polygons (if the limit exists):

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|
$$

When f^{\prime} is continuous on $[a, b]$ (we say $f \in C^{1}([a, b])$), then by the Mean Value Theorem, there is a number $x_{i}^{*} \in\left(x_{i-1}, x_{i}\right)$ such that

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}}=\sqrt{(\Delta x)^{2}+\left(f\left(x_{i}\right)-f\left(x_{i-1}\right)\right)^{2}} \\
& =\sqrt{(\Delta x)^{2}+\left(f^{\prime}\left(x_{i}^{*}\right) \Delta x\right)^{2}}=\sqrt{1+\left(f^{\prime}\left(x_{i}^{*}\right)\right)^{2}} \Delta x .
\end{aligned}
$$

Therefore,

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|=
$$

To get the formula (1), by similar discussion, we divide $c \leq y \leq d$ into n subinterval with endpoints $y_{0}, y_{1}, \ldots, y_{n}$ and equal width Δy, and rewrite $\left|P_{i-1} P_{i}\right|$ as

$$
\begin{aligned}
\left|P_{i-1} P_{i}\right| & =\sqrt{\left(x_{i}-x_{i-1}\right)^{2}+\left(y_{i}-y_{i-1}\right)^{2}}=\sqrt{\left(g\left(y_{i}\right)-g\left(y_{i-1}\right)\right)^{2}+(\Delta y)^{2}} \\
& =\sqrt{\left(g^{\prime}\left(y_{i}^{*}\right) \Delta x\right)^{2}+(\Delta y)^{2}}=\sqrt{1+\left(g^{\prime}\left(y_{i}^{*}\right)\right)^{2}} \Delta y,
\end{aligned}
$$

so

$$
L=\lim _{n \rightarrow \infty} \sum_{i=1}^{n}\left|P_{i-1} P_{i}\right|=
$$

Example 1. Show that the circumference of a circle with radius r is $2 \pi r$.

Solution.

Example 2. Find the length of the curve $x=\frac{1}{3} \sqrt{y}(y-3), 1 \leq y \leq 9$.

Solution.

Example 3 （page 549）．Find the length of the curve $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ ．

Solution．

Exercise．Let $f(x)=\ln x-\frac{1}{8} x^{2}, 1 \leq x \leq 2$ ．Find the length of the graph of f ．
Exercise．Find the length of the curve $y=\int_{1}^{\frac{1}{x^{2}}} \sqrt{t^{3}+1} \mathrm{~d} t, \frac{1}{2} \leq x \leq 1$ ．
Exercise．Given $0<a<b$ ，find the arc length of $y=\ln \left(\frac{\mathrm{e}^{x}+1}{\mathrm{e}^{x}-1}\right)$ for $a \leq x \leq b$ ．

The Arc Length Function

We will find it useful to have a function that measures the arc length of a curve from a particular starting point to any other point on the curve．If a smooth curve C has the equation $y=f(x), a \leq x \leq b$ ，let $s(x)$ be the distance along C from the initial point $P_{0}(a, f(x))$ to the point $Q(x, f(x))$ ．Then

$$
s(x)=\int_{a}^{x} \sqrt{1+\left(f^{\prime}(t)\right)^{2}} \mathrm{~d} t
$$

is a function，called the arc length function（弧長函數）．
By the Fundamental Theorem of Calculus，we get

$$
\frac{\mathrm{d} s}{\mathrm{~d} x}=\sqrt{1+\left(f^{\prime}(x)\right)^{2}}=\sqrt{1+\left(\frac{\mathrm{d} y}{\mathrm{~d} x}\right)^{2}}
$$

In differential sense，we can view the arc length as the infinitesimal Pythagorean theorem：$(\mathrm{d} s)^{2}=(\mathrm{d} x)^{2}+(\mathrm{d} y)^{2}$ ．

Similarly，we have

$$
\mathrm{d} s=\sqrt{1+\left(\frac{\mathrm{d} x}{\mathrm{~d} y}\right)^{2}} \mathrm{~d} y
$$

Remark 4．In general，we can viewed the curve as $\mathbf{r}(x)=(x, f(x))$ ．Then we have $\mathbf{r}^{\prime}(x)=\left(1, f^{\prime}(x)\right)$ and $\left|\mathbf{r}^{\prime}(x)\right|=\sqrt{1+\left(f^{\prime}(x)\right)^{2}}$ ，so the arc－length formula becomes

$$
s(x)=\int_{a}^{x}\left|\mathbf{r}^{\prime}(t)\right| \mathrm{d} t .
$$

