7．4 Integration of Rational Functions by Partial Fractions（page 493）

In this section we show how to integrate any rational function（a ratio of polynomi－ als）by expressing it as a sum of simpler fractions，called partial fractions（部份分式）。

Example 1．Discuss the integral $\int \frac{1}{(a x+b)^{k}} \mathrm{~d} x$ ，where $k \in \mathbb{N}$ ．
Solution．

Example 2．Discuss the integral $\int \frac{A x+B}{\left(a x^{2}+b x+c\right)^{k}} \mathrm{~d} x$ ，where $b^{2}-4 a c<0, k \in \mathbb{N}$ ．
Solution．

Integrate rational functions

Step 1：Perform the long division（長除法）

Definition 3 （page 494）．Consider a rational function $f(x)=\frac{P(x)}{Q(x)}$ ，where $P(x)$ and $Q(x)$ are polynomials．
（a）If the degree of $P(x)$ is less than the degree of $Q(x)$ ，such a rational function $f(x)$ is called proper．
（b）If the degree of $P(x)$ is greater or equal to the degree of $Q(x)$ ，such a rational function $f(x)$ is called improper．

If $f(x)$ is improper，then we use the long division to get

$$
f(x)=\frac{P(x)}{Q(x)}=S(x)+\frac{R(x)}{Q(x)},
$$

and $\frac{R(x)}{Q(x)}$ is proper．
Step 2：Factor the denominator $Q(x)$ as a product of linear factors $(a x+b)$ and irreducible quadratic factors $a x^{2}+b x+c, b^{2}-4 a c<0$ ．（因式分解）
Step 3：Express the proper rational function $\frac{R(x)}{Q(x)}$ as a sum of partial fractions．（拆成部份分式，不同類型有不同的拆解法）

Definition 4 （page 494）．A rational function is called a partial fraction if it is of the form

$$
\frac{A}{(a x+b)^{n}} \quad \text { or } \quad \frac{A x+B}{\left(a x^{2}+b x+c\right)^{n}} .
$$

（1）$Q(x)$ is a product of distinct linear factors．That is，

$$
Q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{2}\right) \cdots\left(a_{k} x+b_{k}\right),
$$

where no factor is repeated，then there exist constants $A_{1}, A_{2}, \ldots, A_{k}$ such that

$$
\frac{R(x)}{Q(x)}=\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{a_{2} x+b_{2}}+\cdots+\frac{A_{k}}{a_{k} x+b_{k}} .
$$

For example，$\frac{2 x^{2}-3 x-1}{x(x+1)(x-1)}=$ \qquad ，then
(2) $Q(x)$ is a product of linear factors, some of which are repeated. Suppose the first linear factor $\left(a_{1} x+b_{1}\right)$ is repeated r times, then instead of the single term $\frac{A_{1}}{a_{1} x+b_{1}}$, we would use

$$
\frac{A_{1}}{a_{1} x+b_{1}}+\frac{A_{2}}{\left(a_{1} x+b_{1}\right)^{2}}+\cdots+\frac{A_{r}}{\left(a_{1} x+b_{1}\right)^{r}} .
$$

For example, $\frac{2 x^{2}-x+3}{(x-1)^{3}}=$
(3) $Q(x)$ contains irreducible quadratic factors, none of which is repeated. That is, $Q(x)$ has the factor $a x^{2}+b x+c$, where $b^{2}-4 a c<0$, then the expression for $\frac{R(x)}{Q(x)}$ will have a term of the form

$$
\frac{A x+B}{a x^{2}+b x+c},
$$

and then we will use the formula

$$
\int \frac{1}{x^{2}+a^{2}} \mathrm{~d} x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C .
$$

(4) $Q(x)$ contains a repeated irreducible quadratic factor. If $Q(x)$ has the factor $\left(a x^{2}+b x+c\right)^{r}$, where $b^{2}-4 a c<0$, then instead of the single partial fraction, the sum

$$
\frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\frac{A_{2} x+B_{2}}{\left(a x^{2}+b x+c\right)^{2}}+\cdots+\frac{A_{r} x+B_{r}}{\left(a x^{2}+b x+c\right)^{r}}
$$

occurs in the $\frac{R(x)}{Q(x)}$.
For example, $\frac{x^{3}-x^{2}+2 x+2}{\left(x^{2}+1\right)^{2}}=$

Example 5 (Case (1)). Show that $\int \sec \theta \mathrm{d} \theta=\ln |\sec \theta+\tan \theta|+C$.

Solution.

Example 6 (Case (2)). Find the integral $\int \frac{x^{2}+3 x+2}{x^{3}-3 x+2} \mathrm{~d} x$.

Solution.

Exercise. Evaluate $\int_{1}^{2} \frac{x^{2}+4}{x^{4}+3 x^{3}+2 x^{2}} \mathrm{~d} x$.
Example 7 (Case (3)). Evaluate the integral $\int \frac{2 x^{2}+5 x+3}{\left(x^{2}+2 x+2\right)(x-1)} \mathrm{d} x$.
Solution.

Exercise. Evaluate the integral $\int \frac{1}{x^{3}+1} \mathrm{~d} x$.
Exercise. Find the integral $\int \frac{1}{x^{3}+x^{2}+x} \mathrm{~d} x$.
Exercise. Evaluate the integral $\int \frac{1}{x^{3}-1} \mathrm{~d} x$.
Exercise. Evaluate $\int \frac{x^{3}-x^{2}+x+1}{x^{3}+x^{2}+x+1} \mathrm{~d} x$.

Example 8. Find the integral $\int \frac{2 x+1}{\left(x^{2}+1\right)^{2}} \mathrm{~d} x$.

Solution.

Rationalizing substitutions, page 500

Some nonrational functions can be changed into rational functions by means of appropriate substitutions. In particular, when an integrand contains an expression of the form $\sqrt[n]{g(x)}$, then the substitution $u=\sqrt[n]{g(x)}$ may be effective.

Example 9 (page 500). Evaluate $\int \frac{\sqrt{x+4}}{x} \mathrm{~d} x$.

Solution.

Exercise. Evaluate the integral $\int \frac{\sqrt{1+\sqrt{x}}}{x} \mathrm{~d} x$.

Convert rational functions of $\sin x$ and $\cos x$ ，page 502

The German mathematician Karl Weierstrass（1815－1897）noticed that the substitu－ tion $t=\tan \left(\frac{x}{2}\right)$ will convert any rational function of $\sin x$ and $\cos x$ into an ordinary rational function of t ．

If $t=\tan \left(\frac{x}{2}\right),-\pi<x<\pi$ ，then we have

$$
\cos \left(\frac{x}{2}\right)=\frac{1}{\sqrt{1+t^{2}}} \quad \text { and } \quad \sin \left(\frac{x}{2}\right)=\frac{t}{\sqrt{1+t^{2}}}
$$

By double－angle formula，we get

$$
\cos x=\frac{1-t^{2}}{1+t^{2}} \quad \text { and } \quad \sin x=\frac{2 t}{1+t^{2}} .
$$

Furthermore，we can compute

$$
\mathrm{d} x=\frac{2}{1+t^{2}} \mathrm{~d} t
$$被積函數是 $\sin x$ 與 $\cos x$ 組成的有理函數，可透過變數代換 $t=\tan \left(\frac{x}{2}\right)$ 處理。

Example 10．Find the integral $\int_{0}^{\frac{\pi}{2}} \frac{1}{2+\cos x} \mathrm{~d} x$ ．

Solution．

Exercise．Find the integral $\int \frac{1}{2+\sin x} \mathrm{~d} x$ ．
Exercise．Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{1}{3-5 \sin x} \mathrm{~d} x$ ．

