6．5 Average Value of a Function（page 461）

Definition 1 （page 461）．We define the average value of f（平均值）on the interval $[a, b]$ as

$$
f_{\text {ave }}=\lim _{n \rightarrow \infty} \frac{1}{b-a} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x .
$$

Example 2．Find the average of $f(x)=\sin x$ on $[0, \pi]$ ．

Solution．

The Mean Value Theorem for Integrals（pgae 462）．If f is continuous on $[a, b]$ ， then there exists a number c in $[a, b]$ such that

$$
f(c)=f_{\text {ave }}=\frac{1}{b-a} \int_{a}^{b} f(x) \mathrm{d} x . \quad\left(\text { or } \int_{a}^{b} f(x) \mathrm{d} x=f(c)(b-a) .\right)
$$

Proof．Consider $F(x)=\int_{a}^{x} f(t) \mathrm{d} t$ ．Since $f(x)$ is continuous on $[a, b], F(x)$ is contin－ uous on $[a, b]$ and differentiable on (a, b) ．By the Mean Value Theorem，there exists $c \in(a, b)$ such that \qquad ．By the Fundamental Theorem，we have \qquad ．Hence

$$
f(c)=
$$

Example 3．Suppose that $f(x)$ is an increasing and continuous function on $[a, b]$ ． Find the line $y=L$ such that $\int_{a}^{b}|f(x)-L| \mathrm{d} x$ is minimum．

Solution．

Example 4．Suppose that $f(x)$ is a continuous function $f(x)$ on $[a, b]$ ．Find the line $y=L$ such that $\int_{a}^{b}(f(x)-L)^{2} \mathrm{~d} x$ is minimum．

Solution．
\square 中位數（median）與平均數（average）的意義。

