5.3 The Fundamental Theorem of Calculus (page 392)

The Fundamental Theorem of Calculus, Part 1 (page 394). If f is continuous on $[a, b]$, then the function g defined by

$$
g(x)=\int_{a}^{x} f(t) \mathrm{d} t \quad a \leq x \leq b
$$

is continuous on $[a, b]$ and differentiable on (a, b), and $g^{\prime}(x)=f(x)$.
Proof. For x and $x+h$ in (a, b), we have

$$
g(x+h)-g(x)=
$$

$$
=
$$

so for $h \neq 0$,

$$
\frac{g(x+h)-g(x)}{h}=
$$

Assume that $h>0$. Since f is continuous on $[x, x+h]$, the \qquad says that there are $u, v \in[x, x+h]$ such that $f(u)=m$ and $f(v)=M$, where m and M are the absolute minimum and maximum values of f on $[x, x+h]$. So

$$
m h \leq \int_{x}^{x+h} f(t) \mathrm{d} t \leq M h \Rightarrow
$$

Now we let $h \rightarrow 0$, then $u \rightarrow x$ and $v \rightarrow x$, so

$$
\lim _{h \rightarrow 0} f(u)=f\left(\lim _{u \rightarrow x} u\right)=f(x) \quad \text { and } \quad \lim _{h \rightarrow 0} f(v)=f\left(\lim _{v \rightarrow x} v\right)=f(x)
$$

because f is continuous at x. By the \qquad , we have

$$
g^{\prime}(x)=\lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h}=f(x) .
$$

If $x=a$ or b, the above discussion can be modified by considering one-sided limit. Since g is differentiable on $[a, b], g$ is continuous on $[a, b]$.

Remark 1. The Fundamental Theorem of Calculus, Part 1, can be written as

$$
\frac{\mathrm{d}}{\mathrm{~d} x} \int_{a}^{x} f(t) \mathrm{d} t=f(x)
$$

when f is continuous.

Example 2 (page 395). Find the derivative of the function $g(x)=\int_{0}^{x} \sqrt{1+t^{2}} \mathrm{~d} t$.

Solution.

Example 3. Find the derivative of $h(x)=\int_{0}^{\sin x} \sqrt{1+r^{3}} \mathrm{~d} r$.

Solution.

The Fundamental Theorem of Calculus, Part 2 (page 396). If f is continuous on $[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)
$$

where $F(x)$ is any antiderivative of $f(x)$, that is, a function such that $F^{\prime}(x)=f(x)$. Proof. Let $g(x)=\int_{a}^{x} f(t) \mathrm{d} t$. From the Fundamental Theorem of Calculus, Part 1, we know $g^{\prime}(x)=f(x)$, so $g(x)$ is an antiderivative of f. If F is any other antiderivative of f on $[a, b]$, then F and g differ by a constant: $F(x)=g(x)+C$ for $a<x<b$. Remark that it also holds when $x=a$ and $x=b$.

We put $x=a$ in the formula of $g(x)$ to get

So we have

$$
F(b)-F(a)=
$$

\qquad

We often use notation $\left.F(x)\right|_{a} ^{b}=F(b)-F(a)$.
The Fundamental Theorem of Calculus (page 398). Suppose f is continuous on $[a, b]$.
(1) If $g(x)=\int_{a}^{x} f(t) \mathrm{d} t$, then $g^{\prime}(x)=f(x)$.
(2) $\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a)$, where F is any antiderivative of f, that is, $F^{\prime}=f$.

