5．2 The Definite Integral（page 378）

Definition of a Definite Integral（page 378）．If f is a function defined for $a \leq$ $x \leq b$ ，we divide the interval $[a, b]$ into n－subintervals of equal width $\Delta x=\frac{b-a}{n}$ ． We let $x_{0}=a, x_{1}, x_{2}, \ldots, x_{n}=b$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ be any sample points（樣本點）in these subintervals，so x_{i}^{*} lies in the i－th subinterval $\left[x_{i-1}, x_{i}\right]$ ．Then the definite integral（定積分）of f from a to b is

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists and gives the same value for all possible choices of sample points．If it does exist，we say that f is integrable（可積）on $[a, b]$ ．

Figure 1：Definition of a definite integral．
The precise meaning of the limit that defines the integral is as follows：
For every number $\varepsilon>0$ ，there is an integer N such that

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x-\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x\right|<\varepsilon
$$

for every integer $n>N$ and for every choice of x_{i}^{*} in $\left[x_{i-1}, x_{i}\right]$ ．
There are some notations we should know：

$$
\begin{array}{ll}
& \text { integral sign: } \\
\int_{a}^{b} f(x) \mathrm{d} x & \text { integrand: } \\
& \text { limits of integration: } \\
& \text { lower limit (下限): } \\
& \text { upper limit (上限): }
\end{array}
$$The procedure of calculating an integral is called integration.The $\mathrm{d} x$ simply indicates that the independent variable is x. (dummy variable)The definite integral $\int_{a}^{b} f(x) \mathrm{d} x$ is a number; it does not depend on x.The sum $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x$ is called a Riemann sum.The geometric meaning of $\int_{a}^{b} f(x) \mathrm{d} x$ is the net area of $y=f(x)$ from a to b.In fact, the subinterval widths are not necessary equal width.

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x_{i} .
$$Not all functions are integrable. For example, the Dirichlet function, or $f(x)=\frac{1}{x}$ on $0<x \leq 1$.

Example 1. Show that $f(x)=\frac{1}{x}$ on $0<x \leq 1$ is not integrable.

Solution.

Theorem 2 (page 380). If f is continuous on $[a, b]$, or if f has only a finite number of jump discontinuous, then f is integrable on $[a, b]$; that is, the definite integral $\int_{a}^{b} f(x) \mathrm{d} x$ exists.

If f is integrable on $[a, b]$, then the limit of Riemann sum exists and gives the same value no matter how we choose the sample points x_{i}^{*}. To simplify the calculation of the integral, we often taken the sample points to be right endpoints. Then $x_{i}^{*}=x_{i}$ and the definition of an integral simplifies as follows.

Theorem 3 (page 380). If f is integrable on $[a, b]$, then

$$
\int_{a}^{b} f(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}\right) \Delta x
$$

where $\Delta x=\frac{b-a}{n}$ and $x_{i}=a+i \Delta x$.

Example 4 (page 383). Set up an expression for $\int_{1}^{3} \mathrm{e}^{x} \mathrm{~d} x$ as a limit of sums.

Solution.

Example 5. Change the following limits of sums as integrals:

$$
\lim _{n \rightarrow \infty} n^{2}\left(\frac{1}{n^{3}}+\frac{1}{(n+1)^{3}}+\cdots+\frac{1}{(n+(2 n-1))^{3}}\right)
$$

Solution.

Evaluating Integrals

Example 6 (page 383). Evaluate the expression in Example 4.

Solution.

\square Example 1 in section 5.1 is also an evaluating integral of $\int_{0}^{1} x^{2} \mathrm{~d} x$.

Properties of the Definite Integral

Properties of the Integral (page 385-387).
(1) $\int_{a}^{b} c \mathrm{~d} x=c(b-a)$, where c is any constant.
(2) $\int_{a}^{b}(f(x)+g(x)) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x+\int_{a}^{b} g(x) \mathrm{d} x$.
(3) $\int_{a}^{b} c f(x) \mathrm{d} x=c \int_{a}^{b} f(x) \mathrm{d} x$, where c is any constant.
(4) $\int_{a}^{b}(f(x)-g(x)) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x-\int_{a}^{b} g(x) \mathrm{d} x$.
(5) $\int_{a}^{b} f(x) \mathrm{d} x+\int_{b}^{c} f(x) \mathrm{d} x=\int_{a}^{c} f(x) \mathrm{d} x$.
(6) If $f(x) \geq 0$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) \mathrm{d} x \geq 0$.
(7) If $f(x) \geq g(x)$ for $a \leq x \leq b$, then $\int_{a}^{b} f(x) \mathrm{d} x \geq \int_{a}^{b} g(x) \mathrm{d} x$.
(8) If $m \leq f(x) \leq M$ for $a \leq x \leq b$, then $m(b-a) \leq \int_{a}^{b} f(x) \mathrm{d} x \leq M(b-a)$.

Example 7 (page 391). If f is continuous on $[a, b]$, show that

$$
\left|\int_{a}^{b} f(x) \mathrm{d} x\right| \leq \int_{a}^{b}|f(x)| \mathrm{d} x .
$$

Solution.

