Chapter 5 Integrals

5.1 Areas and Distances (page 360)

The Area Problem, page 360
Example 1. Use rectangles to estimate the area under the parabola $y=x^{2}$ from 0 to 1 .

Solution.

Definition 2 （page 365）．The area（面積）A of the region S that lies under the graph of the continuous function f is the limit of the sum of the areas of approximating rectangles：

$$
A=\lim _{n \rightarrow \infty} R_{n}=\lim _{n \rightarrow \infty}\left(f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\cdots+f\left(x_{n}\right) \Delta x\right) .
$$

It can also be shown that we get the same value if we use left endpoints：

$$
A=\lim _{n \rightarrow \infty} L_{n}=\lim _{n \rightarrow \infty}\left(f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\cdots+f\left(x_{n-1}\right) \Delta x\right)
$$

In fact，instead of using left endpoints or right endpoints，we could take the height of the i－th rectangle to be the value of f at any number x_{i}^{*} in the i－th subinterval $\left[x_{i-1}, x_{i}\right]$ ．We call numbers $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ the sample points（樣本點）．

In general，we form lower sums（下和）（and upper sums，上和）by choosing the sample points x_{i}^{*} so that $f\left(x_{i}^{*}\right)$ is the minimum（and maximum）value of f on the i－th subinterval．

The Distance Problem，page 367

We can find the distance traveled by an object during a certain time period if the velocity of the object is known at all times．

