4.5 Summary of Curve Sketching (page 315)

Guidelines for sketching a curve

 \widehat{z} **Domain**: the set of x for which f(x) is defined.

 $\overline{\mathcal{X}}$ Intercepts: y-intercept f(0), x-intercepts: let y = 0 and solve for x.

對 **Symmetry**: even function, odd function, periodic function.

漸 Asymptotes: horizontal asymptotes, vertical asymptotes, slant asymptotes.

- Intervals of increase or decrease: use the Increasing/Decreasing test.
- The Local maximum and minimum values: find the critical numbers of f(f'(c) = 0 or f'(c) does not exist.)
- \square Concavity and points of inflection: compute f''(x) and use the Concavity Test.

Sketch the Curve: use the information in items 1–7, draw the graph.

Definition 1 (page 320). If

$$\lim_{x \to \infty} (f(x) - (mx + b)) = 0,$$

where $m \neq 0$, then the line y = mx + b is called a *slant asymptote* (斜漸近線).

Proposition 1. The graph of f(x) has a slant asymptote if and only if

$$\lim_{x \to \infty} \frac{f(x)}{x} = m \neq 0 \quad and \quad \lim_{x \to \infty} (f(x) - mx) = b.$$

Proof. When x > 0,

$$\frac{f(x)}{x} = \frac{f(x) - (mx+b)}{x} + m + \frac{b}{x} \Rightarrow \lim_{x \to \infty} \frac{f(x)}{x} = 0 + m + 0 = m.$$
$$\lim_{x \to \infty} (f(x) - mx) = \lim_{x \to \infty} (f(x) - (mx+b) + b)$$
$$= \lim_{x \to \infty} (f(x) - (mx+b)) + \lim_{x \to \infty} b = 0 + b = b.$$

Conversely, we have

$$\lim_{x \to \infty} (f(x) - (mx + b)) = \lim_{x \to \infty} ((f(x) - mx) - b)$$
$$= \lim_{x \to \infty} (f(x) - mx) - \lim_{x \to \infty} b = b - b = 0$$

□ 函數圖形當 $x \to -\infty$ 也可能存在斜漸近線, 定義與其等價條件都改成 $\lim_{x\to-\infty}$ 。 □ 兩個極限都要存在才能稱函數有斜漸近線。例如 $f(x) = \ln x$ 沒有斜漸近線。

Example 1 (page 317). Sketch the curve $y = \frac{2x^2}{x^2-1}$.

Solution.

- A. The domain is .
- **B.** The *x* and *y*-intercept are both _.
- C. Since , the function f is ____.

D. Since

$$\lim_{x \to \pm \infty} \frac{2x^2}{x^2 - 1} = \qquad ,$$

the line _____ is a ______. The denominator is 0 when _____. we compute the following limits:

$$\lim_{x \to 1^{+}} \frac{2x^{2}}{x^{2} - 1} = \lim_{x \to 1^{-}} \frac{2x^{2}}{x^{2} - 1} = \lim_{x \to -1^{+}} \frac{2x^{2}}{x^{2} - 1} = \lim_{x \to -1^{-}} \frac{2x^{2}}{x^{2} - 1} =$$

Therefore the lines _____ and are vertical asymptotes.

E. Direct computation gives

$$y' =$$

_____ Since f'(x) > 0 when ______ and f'(x) < 0 when ______, f is increasing on ______ and decreasing on ______.

- **F.** The only critical number is _____. Since f' changes from positive to negative at 0, f(0) = 0 is a _____ by the First Derivative Test.
- **G.** Direct computation gives

$$f''(x) =$$

We know f''(x) > 0 on _____ and f''(x) < 0 on _____. Thus the curve is concave upward on the interval ______ and concave downward on . It has no point of inflection since

H. Using this information to sketch the curve. (畫在右上角)

Example 2 (page 317). Sketch the curve $y = \frac{x^2}{\sqrt{x+1}}$.

Solution.

- A. The domain is _____.
- **B.** The *x* and *y*-intercept are both _.
- C. Symmetry: None.
- **D.** Since

$$\lim_{x \to \infty} \frac{x^2}{\sqrt{x+1}} = \underline{\quad},$$

there is no horizontal asymptote. Since

$$\lim_{x \to -1^+} \frac{x^2}{\sqrt{x+1}} = \underline{\quad},$$

the line _____ is a vertical asymptotes.

E. Direct computation gives

$$y' =$$

We see that f'(x) = 0 when _____, so the only critical number is _. Since f'(x) > 0 when _____ and f'(x) < 0 when _____, f is increasing on _____.

- **F.** Since f'(0) = 0 and f' changes from negative to positive at 0, f(0) = 0 is a by the First Derivative Test.
- G. Direct computation gives

f''(x) =

Since the numerator is always _____, we know f''(x) > 0 for all x in the domain of f, which means f is concave upward on _____ and there is no point of inflection.

H. Using this information to sketch the curve. (畫在右上角)

Example 3 (page 318). Sketch the curve $y = xe^x$.

Solution.

- A. The domain is _.
- **B.** The *x* and *y*-intercept are both _.
- C. Symmetry: None.
- **D.** Since

$$\lim_{x \to \infty} x e^x = _,$$

there is no horizontal asymptote. By the l'Hospital Rule, we have

$$\lim_{x \to -\infty} x e^x = \lim_{x \to -\infty} \frac{x}{e^{-x}} =$$

so the _____ is a horizontal asymptote.

E. Direct computation gives

$$y' =$$
_____.

Since f'(x) > 0 when _____ and f'(x) < 0 when _____, f is increasing on _____.

- **F.** Since f'(-1) = 0 and f' changes from negative to positive at x = -1, $f(-1) = -e^{-1}$ is a ______ by the First Derivative Test.
- G. Direct computation gives

$$f''(x) = _____.$$

Since f''(x) > 0 if _____ and f''(x) < 0 if _____, f is concave upward on _____ and concave downward on _____. The inflection point is

H. Using this information to sketch the curve. (畫在右上角)

Example 4 (page 319). Sketch the curve $y = \frac{\cos x}{2 + \sin x}$.

Solution.

- A. The domain is _.
- **B.** The *x*-intercepts are ______ and *y*-intercept is ______.
- C. Symmetry: f is neither even nor odd. Since $f(x + 2\pi) = f(x)$ for all x, f is ______ and has period _____. Thus, the following steps we only consider $0 \le x \le 2\pi$ and then extend the curve by translation.
- **D.** Asymptotes: None.
- E. Direct computation gives

y' =		
Thus $f'(x) > 0$ when		. So f is
increasing on	and decreasing on .	

- **F.** From part **E** and First Derivative Test, we see that the local minimum value is ______.
- G. Direct computation gives

f''(x) =

Since f''(x) > 0 if ______, f is concave upward on ______ and concave downward on ______. The inflection point is ______.

H. Using this information to sketch the curve.

Example 5 (page 319). Sketch the curve $y = \ln(4 - x^2)$.

Solution.

- A. The domain is _____.
- **B.** The *y*-intercept is $f(0) = \ln 4$. To find the *x*-intercept, we set $\ln(4 x^2) = 0$, so we have ______. Therefore the *x*-intercepts are _____.
- C. Since f(-x) = f(x), f is _____ and the curve is symmetric about the _____.
- **D.** Since

$$\lim_{x \to -2^+} \ln(4 - x^2) = \underline{\qquad}, \qquad \lim_{x \to 2^-} \ln(4 - x^2) = \underline{\qquad},$$

the lines ______ are vertical asymptotes.

E. Direct computation gives

$$y' =$$

Since f'(x) > 0 when _____ and f'(x) < 0 when _____, f is increasing on _____ and decreasing on ____.

- **F.** The only critical number is _____. Since f' changes from positive to negative at 0, $f(0) = \ln 4$ is a _____ by the First Derivative Test.
- **G.** Direct computation gives

$$f''(x) =$$

Since f''(x) < 0 for all x, the curve is _____ on ____ and has no inflection point.

H. Using this information to sketch the curve.

Example 6 (page 320). Sketch the curve $y = \frac{x^3}{x^2+1}$.

Solution.

- A. The domain is _.
- **B.** The *x* and *y*-intercept are both _.
- C. Since , the function f is ____.
- **D.** Since $x^2 + 1$ is never 0, there is no vertical asymptote. Since $f(x) \to \infty$ as $x \to \infty$ and $f(x) \to -\infty$ as $x \to -\infty$, there is no horizontal asymptote. Long division gives

$$f(x) = \frac{x^3}{x^2 + 1} = \underline{\qquad},$$

$$f(x) - x = -\frac{x}{x^2 + 1} = \underline{\qquad},$$

So the line _____ is a _____.

E. Direct computation gives

y' =_____

Since f'(x) > 0 when _____, f is increasing on _____.

- **F.** Although f'(0) = 0, f' does not change sign at 0, so there is ______. or _____.
- **G.** Direct computation gives

$$f''(x) =$$

Since f''(x) = 0 when _____, we set up the following chart. The points of inflection are _____.

H. Using this information to sketch the curve.