4．5 Summary of Curve Sketching（page 315）

Guidelines for sketching a curve

定 Domain：the set of x for which $f(x)$ is defined．
交 Intercepts：y－intercept $f(0), x$－intercepts：let $y=0$ and solve for x ．
對 Symmetry：even function，odd function，periodic function．
漸 Asymptotes：horizontal asymptotes，vertical asymptotes，slant asymptotes．
－Intervals of increase or decrease：use the Increasing／Decreasing test．
極 Local maximum and minimum values：find the critical numbers of f （ $f^{\prime}(c)=0$ or $f^{\prime}(c)$ does not exist．）

二 Concavity and points of inflection：compute $f^{\prime \prime}(x)$ and use the Concavity Test．

圖 Sketch the Curve：use the information in items 1－7，draw the graph．
Definition 1 （page 320）．If

$$
\lim _{x \rightarrow \infty}(f(x)-(m x+b))=0,
$$

where $m \neq 0$ ，then the line $y=m x+b$ is called a slant asymptote（斜漸近線）．
Proposition 1．The graph of $f(x)$ has a slant asymptote if and only if

$$
\lim _{x \rightarrow \infty} \frac{f(x)}{x}=m \neq 0 \quad \text { and } \quad \lim _{x \rightarrow \infty}(f(x)-m x)=b
$$

Proof．When $x>0$ ，

$$
\begin{aligned}
& \frac{f(x)}{x}=\frac{f(x)-(m x+b)}{x}+m+\frac{b}{x} \Rightarrow \lim _{x \rightarrow \infty} \frac{f(x)}{x}=0+m+0=m . \\
& \begin{aligned}
\lim _{x \rightarrow \infty}(f(x)-m x) & =\lim _{x \rightarrow \infty}(f(x)-(m x+b)+b) \\
& =\lim _{x \rightarrow \infty}(f(x)-(m x+b))+\lim _{x \rightarrow \infty} b=0+b=b .
\end{aligned}
\end{aligned}
$$

Conversely，we have

$$
\begin{aligned}
\lim _{x \rightarrow \infty}(f(x)-(m x+b)) & =\lim _{x \rightarrow \infty}((f(x)-m x)-b) \\
& =\lim _{x \rightarrow \infty}(f(x)-m x)-\lim _{x \rightarrow \infty} b=b-b=0 .
\end{aligned}
$$函數圖形當 $x \rightarrow-\infty$ 也可能存在斜漸近線，定義與其等價條件都改成 $\lim _{x \rightarrow-\infty}$ 。兩個極限都要存在才能稱函數有斜漸近線。例如 $f(x)=\ln x$ 沒有斜漸近線。

Example 1 （page 317）．Sketch the curve $y=\frac{2 x^{2}}{x^{2}-1}$ ．

Solution．

A．The domain is \qquad －

B．The x－and y－intercept are both
C．Since \qquad ，the function f is \qquad ．

D．Since

$$
\lim _{x \rightarrow \pm \infty} \frac{2 x^{2}}{x^{2}-1}=
$$

\qquad
the line \qquad is a \qquad ．The denominator is 0 when \qquad ． we compute the following limits：

$$
\begin{array}{ll}
\lim _{x \rightarrow 1^{+}} \frac{2 x^{2}}{x^{2}-1}= & \lim _{x \rightarrow 1^{-}} \frac{2 x^{2}}{x^{2}-1}= \\
\lim _{x \rightarrow-1^{+}} \frac{2 x^{2}}{x^{2}-1}= & \lim _{x \rightarrow-1^{-}} \frac{2 x^{2}}{x^{2}-1}=
\end{array}
$$

Therefore the lines \qquad and \qquad are vertical asymptotes．

E．Direct computation gives

$$
y^{\prime}=
$$

\qquad
Since $f^{\prime}(x)>0$ when \qquad and $f^{\prime}(x)<0$ when \qquad ， f is increasing on \qquad and decreasing on \qquad ．

F．The only critical number is \qquad ．Since f^{\prime} changes from positive to negative at $0, f(0)=0$ is a \qquad by the First Derivative Test．

G．Direct computation gives

$$
f^{\prime \prime}(x)=
$$

\qquad
We know $f^{\prime \prime}(x)>0$ on \qquad and $f^{\prime \prime}(x)<0$ on \qquad ．Thus the curve is con－ cave upward on the interval \qquad and concave downward on
\qquad ．It has no point of inflection since \qquad ．

H．Using this information to sketch the curve．（畫在右上角）

Example 2 （page 317）．Sketch the curve $y=\frac{x^{2}}{\sqrt{x+1}}$ ．

Solution．

A．The domain is \qquad ．

B．The x－and y－intercept are both＿．
C．Symmetry：None．
D．Since

$$
\lim _{x \rightarrow \infty} \frac{x^{2}}{\sqrt{x+1}}=
$$

there is no horizontal asymptote．Since

$$
\lim _{x \rightarrow-1^{+}} \frac{x^{2}}{\sqrt{x+1}}=
$$

the line \qquad is a vertical asymptotes．

E．Direct computation gives

$$
y^{\prime}=
$$

\qquad
We see that $f^{\prime}(x)=0$ when \qquad ，so the only critical number is \qquad Since $f^{\prime}(x)>0$ when \qquad and $f^{\prime}(x)<0$ when \qquad ，f is increasing on
\qquad and decreasing on \qquad －

F．Since $f^{\prime}(0)=0$ and f^{\prime} changes from negative to positive at $0, f(0)=0$ is a
\qquad by the First Derivative Test．

G．Direct computation gives

$$
f^{\prime \prime}(x)=
$$

Since the numerator is always \qquad ，we know $f^{\prime \prime}(x)>0$ for all x in the domain of f ，which means f is concave upward on \qquad and there is no point of inflection．

H．Using this information to sketch the curve．（畫在右上角）

Example 3 （page 318）．Sketch the curve $y=x \mathrm{e}^{x}$ ．

Solution．

A．The domain is \qquad ．

B．The x－and y－intercept are both＿．
C．Symmetry：None．
D．Since

$$
\lim _{x \rightarrow \infty} x \mathrm{e}^{x}=\text { — }
$$

there is no horizontal asymptote．By the l＇Hospital Rule，we have

$$
\lim _{x \rightarrow-\infty} x \mathrm{e}^{x}=\lim _{x \rightarrow-\infty} \frac{x}{\mathrm{e}^{-x}}=
$$

\qquad
so the \qquad is a horizontal asymptote．

E．Direct computation gives

$$
y^{\prime}=
$$

\qquad ．

Since $f^{\prime}(x)>0$ when \qquad and $f^{\prime}(x)<0$ when \qquad ，f is increasing on
\qquad and decreasing on \qquad ．

F．Since $f^{\prime}(-1)=0$ and f^{\prime} changes from negative to positive at $x=-1, f(-1)=$ $-\mathrm{e}^{-1}$ is a \qquad by the First Derivative Test．

G．Direct computation gives

$$
f^{\prime \prime}(x)=
$$

\qquad ．

Since $f^{\prime \prime}(x)>0$ if \qquad and $f^{\prime \prime}(x)<0$ if \qquad ，f is concave upward on \qquad and concave downward on \qquad ．The inflection point is
\qquad －

H．Using this information to sketch the curve．（畫在右上角）

Example 4 (page 319). Sketch the curve $y=\frac{\cos x}{2+\sin x}$.

Solution.

A. The domain is \qquad
B. The x-intercepts are \qquad and y-intercept is \qquad .
C. Symmetry: f is neither even nor odd. Since $f(x+2 \pi)=f(x)$ for all x, f is \qquad and has period \qquad . Thus, the following steps we only consider $0 \leq x \leq 2 \pi$ and then extend the curve by translation.
D. Asymptotes: None.
E. Direct computation gives

$$
y^{\prime}=
$$

\qquad
Thus $f^{\prime}(x)>0$ when \qquad . So f is increasing on \qquad and decreasing on \qquad .
F. From part E and First Derivative Test, we see that the local minimum value is \qquad and local maximum value is \qquad .
G. Direct computation gives

$$
f^{\prime \prime}(x)=
$$

\qquad
Since $f^{\prime \prime}(x)>0$ if \qquad , f is concave upward on \qquad and concave downward on \qquad . The inflection point is \qquad .
H. Using this information to sketch the curve.

Example 5 (page 319). Sketch the curve $y=\ln \left(4-x^{2}\right)$.

Solution.

A. The domain is \qquad .
B. The y-intercept is $f(0)=\ln 4$. To find the x-intercept, we set $\ln \left(4-x^{2}\right)=0$, so we have \qquad . Therefore the x-intercepts are \qquad .
C. Since $f(-x)=f(x), f$ is \qquad and the curve is symmetric about the \qquad .
D. Since

$$
\lim _{x \rightarrow-2^{+}} \ln \left(4-x^{2}\right)=\ldots, \quad \lim _{x \rightarrow 2^{-}} \ln \left(4-x^{2}\right)=
$$

\qquad ,
the lines \qquad are vertical asymptotes.
E. Direct computation gives

$$
y^{\prime}=
$$

\qquad
Since $f^{\prime}(x)>0$ when \qquad and $f^{\prime}(x)<0$ when \qquad , f is increasing on \qquad and decreasing on \qquad .
F. The only critical number is \qquad . Since f^{\prime} changes from positive to negative at $0, f(0)=\ln 4$ is a \qquad by the First Derivative Test.
G. Direct computation gives

$$
f^{\prime \prime}(x)=
$$

\qquad
Since $f^{\prime \prime}(x)<0$ for all x, the curve is \qquad on \qquad and has no inflection point.
H. Using this information to sketch the curve.

Example 6 (page 320). Sketch the curve $y=\frac{x^{3}}{x^{2}+1}$.

Solution.

A. The domain is \qquad .
B. The x - and y-intercept are both _.
C. Since \qquad , the function f is \qquad .
D. Since $x^{2}+1$ is never 0 , there is no vertical asymptote. Since $f(x) \rightarrow \infty$ as $x \rightarrow \infty$ and $f(x) \rightarrow-\infty$ as $x \rightarrow-\infty$, there is no horizontal asymptote. Long division gives

$$
\begin{aligned}
& f(x)=\frac{x^{3}}{x^{2}+1}= \\
& f(x)-x=-\frac{x}{x^{2}+1}=
\end{aligned}
$$

So the line \qquad is a \qquad .
E. Direct computation gives

$$
y^{\prime}=
$$

\qquad
Since $f^{\prime}(x)>0$ when \qquad , f is increasing on \qquad .
F. Although $f^{\prime}(0)=0, f^{\prime}$ does not change sign at 0 , so there is \qquad or \qquad -.
G. Direct computation gives

$$
f^{\prime \prime}(x)=
$$

Since $f^{\prime \prime}(x)=0$ when \qquad , we set up the following chart.

The points of inflection are \qquad .
H. Using this information to sketch the curve.

