4.3 How Derivatives Affect the Shape of a Graph (page 293)

Increasing/Decreasing Test (page 293).

(a) If f'(x) > 0 on an interval, then f is increasing on that interval.

(b) If f'(x) < 0 on an interval, then f is decreasing on that interval.

Proof.

(a) Let $x_1 < x_2$. By the _____, there is $c \in (x_1, x_2)$ such that

(b) Let $x_1 < x_2$. By the _____, there is $c \in (x_1, x_2)$ such that

Example 1. Find where the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ is increasing and where it is decreasing.

Solution. We compute f'(x) =

Solutions of f'(x) = 0 are . Hence

f(x) is increasing on _____; f(x) is decreasing on _____.

The First Derivative Test (page 294). Suppose that c is a critical number of a continuous function f.

- (a) If f' changes from positive to negative at c, then f has a local maximum at c.
- (b) If f' changes from negative to positive at c, then f has a local minimum at c.
- (c) If f' does not change sign at c (for example, if f' is positive on both side of c or negative on both sides), then f has no local maximum or minimum at c.

Figure 1: The First Derivative Test.

Example 2. Find the local minimum and maximum values of the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ in **Example 1**.

Solution.

x	-1	0	2	
f	0	5	-27	
f'				

Hence f has local maximum ; f has local minimum

Definition 3 (page 296). If the graph f lies above all of it tangents on an interval I, then it is called *concave upward* (凹口朝上) on I. If the graph f lies below all of it tangents on an interval I, then it is called *concave downward* (凹口朝下) on I.

□ 有些教科書或文獻使用凸函數 (convex) 取代凹口向上 (concave upward)。

Figure 2: Concave upward and concave downward.

Concavity Test (page 296).

- (a) If f''(x) > 0 for all x in I, then the graph of f is concave upward on I.
- (b) If f''(x) < 0 for all x in I, then the graph of f is concave downward on I.

Proof of (a). Since f''(x) > 0 in I, we know that f'(x) is increasing in I. Given $x_0 \in I$, the tangent line equation to the graph of f(x) at $(x_0, f(x_0))$ is

$$y - f(x_0) = f'(x_0)(x - x_0) \Rightarrow y = f'(x_0)(x - x_0) + f(x_0).$$

We will show that $f(x) \ge f'(x_0)(x - x_0) + f(x_0)$ for all $x \in I$.

Consider the function

$$F(x) = f(x) - f'(x_0)(x - x_0) - f(x_0)$$
 for $x \in I$.

First, we know that $F(x_0) = 0$. Next, we compute $F'(x) = f'(x) - f'(x_0)$, which implies $F'(x_0) = f'(x_0) - f'(x_0) = 0$. Since F'(x) < 0 for $x < x_0$ and F'(x) > 0 for $x > x_0$, we know that $F(x_0)$ is a local (and hence absolute) minimum at $x = x_0$ in I. That means $F(x) \ge 0$ for all $x \in I$, thus $f(x) \ge f'(x_0)(x - x_0) + f(x_0)$ for all $x \in I$. **Definition 4** (page 297). A point P on a curve y = f(x) is called an *inflection* point (反曲點) if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P.

Figure 3: Inflection points.

Example 5. Find the concave upward and downward intervals, and inflection points of the function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$ in **Example 1**. Sketch the graph of f.

Solution. We compute

$$f''(x) =$$

 So

x		-1	x_1	0	x_2	2	
f		0	$f(x_1)$	5	$f(x_2)$	-27	
f'	—	0	+	0	_	0	+
f''							

The points of inflections are

f is concave upward on $\qquad \qquad .$

f is concave downward on \qquad .

Figure 4: The graph of $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$.

The Second Derivative Test (page 297). Suppose f'' is continuous near c.

- (a) If f'(c) = 0 and f''(c) > 0, then f has a local minimum at c.
- (b) If f'(c) = 0 and f''(c) < 0, then f has a local maximum at c.

Example 6. Show that $f(x) = \frac{\sin x}{x}$ is decreasing on $(0, \frac{\pi}{2})$. Solution.

□ 比較 Section 2.3, 那時候證明了 $|\sin x| \le |x|$ 。

Example 7. Classify all cubic functions $f(x) = ax^3 + bx^2 + cx + d$. Solution.