4.3 How Derivatives Affect the Shape of a Graph (page 293)

Increasing/Decreasing Test (page 293).
(a) If $f^{\prime}(x)>0$ on an interval, then f is increasing on that interval.
(b) If $f^{\prime}(x)<0$ on an interval, then f is decreasing on that interval. Proof.
(a) Let $x_{1}<x_{2}$. By the \qquad there is $c \in\left(x_{1}, x_{2}\right)$ such that
(b) Let $x_{1}<x_{2}$. By the \qquad , there is $c \in\left(x_{1}, x_{2}\right)$ such that

Example 1. Find where the function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ is increasing and where it is decreasing.

Solution. We compute $f^{\prime}(x)=$
Solutions of $f^{\prime}(x)=0$ are \qquad . Hence
$f(x)$ is increasing on \qquad ; $f(x)$ is decreasing on \qquad .

The First Derivative Test (page 294). Suppose that c is a critical number of a continuous function f.
(a) If f^{\prime} changes from positive to negative at c, then f has a local maximum at c.
(b) If f^{\prime} changes from negative to positive at c, then f has a local minimum at c.
(c) If f^{\prime} does not change sign at c (for example, if f^{\prime} is positive on both side of c or negative on both sides), then f has no local maximum or minimum at c.

Figure 1: The First Derivative Test.

Example 2．Find the local minimum and maximum values of the function $f(x)=$ $3 x^{4}-4 x^{3}-12 x^{2}+5$ in Example 1.

Solution．

x	-1	0	2
f	0	5	-27
f^{\prime}			

Hence f has local maximum \qquad ；f has local minimum \qquad ．

Definition 3 （page 296）．If the graph f lies above all of it tangents on an interval I ，then it is called concave upward（凹口朝上）on I ．If the graph f lies below all of it tangents on an interval I ，then it is called concave downward（凹口朝下）on I ．
\square 有些教科書或文獻使用凸函數（convex）取代凹口向上（concave upward）。

Figure 2：Concave upward and concave downward．

Concavity Test（page 296）．
（a）If $f^{\prime \prime}(x)>0$ for all x in I ，then the graph of f is concave upward on I ．
（b）If $f^{\prime \prime}(x)<0$ for all x in I ，then the graph of f is concave downward on I ．
Proof of（a）．Since $f^{\prime \prime}(x)>0$ in I ，we know that $f^{\prime}(x)$ is increasing in I ．Given $x_{0} \in I$ ，the tangent line equation to the graph of $f(x)$ at $\left(x_{0}, f\left(x_{0}\right)\right)$ is

$$
y-f\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \Rightarrow y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right) .
$$

We will show that $f(x) \geq f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$ for all $x \in I$ ．
Consider the function

$$
F(x)=f(x)-f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)-f\left(x_{0}\right) \quad \text { for } \quad x \in I .
$$

First，we know that $F\left(x_{0}\right)=0$ ．Next，we compute $F^{\prime}(x)=f^{\prime}(x)-f^{\prime}\left(x_{0}\right)$ ，which implies $F^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)-f^{\prime}\left(x_{0}\right)=0$ ．Since $F^{\prime}(x)<0$ for $x<x_{0}$ and $F^{\prime}(x)>0$ for $x>x_{0}$ ，we know that $F\left(x_{0}\right)$ is a local（and hence absolute）minimum at $x=x_{0}$ in I ．That means $F(x) \geq 0$ for all $x \in I$ ，thus $f(x) \geq f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+f\left(x_{0}\right)$ for all $x \in I$ ．

Definition 4 （page 297）．A point P on a curve $y=f(x)$ is called an inflection point（反曲點）if f is continuous there and the curve changes from concave upward to concave downward or from concave downward to concave upward at P ．

Figure 3：Inflection points．

Example 5．Find the concave upward and downward intervals，and inflection points of the function $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ in Example 1．Sketch the graph of f ．

Solution．We compute

$$
f^{\prime \prime}(x)=
$$

So

x	-1	x_{1}	0	x_{2}	2		
f	0	$f\left(x_{1}\right)$	5	$f\left(x_{2}\right)$	-27		
f^{\prime}	-	0	+	0	-	0	+
$f^{\prime \prime}$							

The points of inflections are \qquad ．
f is concave upward on \qquad ．
f is concave downward on \qquad ．

Figure 4：The graph of $f(x)=3 x^{4}-4 x^{3}-12 x^{2}+5$ ．

The Second Derivative Test（page 297）．Suppose $f^{\prime \prime}$ is continuous near c．
（a）If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)>0$ ，then f has a local minimum at c ．
（b）If $f^{\prime}(c)=0$ and $f^{\prime \prime}(c)<0$ ，then f has a local maximum at c ．
Example 6．Show that $f(x)=\frac{\sin x}{x}$ is decreasing on $\left(0, \frac{\pi}{2}\right)$ ．
Solution．

比較 Section 2．3，那時候證明了 $|\sin x| \leq|x|$ 。
Example 7．Classify all cubic functions $f(x)=a x^{3}+b x^{2}+c x+d$ ．
Solution．

