3．10 Linear Approximations and Differentials （page 251）

Recall two high school mathematics questions．
Example 1．Let $f(x)=3 x^{3}-22 x^{2}+54 x-43$ ．Find $f(2.001)$ correct to three decimal place．

Solution．

Example 2．Find 1.0001^{100} correct to two decimal place．

Solution．

如何抓出一個量的「主要部份」？

A curve lies very close to its tangent line near the point of tangency．In fact，by zooming in toward a point on the graph of a differentiable function，we noticed that the graph looks more and more like its tangent line．This observation is the basis for a method of finding approximate values of functions．

The idea is that it might be easy to calculate a value $f(a)$ of a function，but difficult to compute nearby values of f ．So we settle for the easily computed values of the linear function L whose graph is the tangent line of f at $(a, f(a))$ ．

Given a curve $y=f(x)$ ，an equation of the tangent line at $(a, f(a))$ is

$$
y=f(a)+f^{\prime}(a)(x-a) .
$$

Definition 3 （page 252）．The approximation

$$
f(x) \approx f(a)+f^{\prime}(a)(x-a)
$$

is called the linear approximation or tangent line approximation of f at a（線性估計，切線估計）．The linear function whose graph is this tangent line，that is，

$$
L(x)=f(a)+f^{\prime}(a)(x-a)
$$

is called the linearization of f at a（線性化）．

Example 4 （page 252）．Approximate the numbers $\sqrt{3.98}$ ．

Solution．

\square 選取「適合的點」進行線性估計。
Example 5．Using a linear approximation to estimate $\cot 46^{\circ}$ ．

Solution．

角的單位必須換成「弧度」再計算。Example 6．Go back to Example 1．and Example 2．to find out the calculation is in fact the linear approximation．

Solution．

（1）$f(x)=3 x^{3}-22 x^{2}+54 x-43=1+2(x-2)-4(x-2)^{2}+3(x-2)^{3}$ ．

$$
f^{\prime}(x)=2-8(x-2)+9(x-2)^{2} . f(2.001) \approx f(2)+f^{\prime}(2)(2.001-2)=1.002
$$

（2）$f(x)=(1+x)^{100}=C_{0}^{100} 1^{100} x^{0}+C_{1}^{100} 1^{99} x^{1}+C_{2}^{100} 1^{98} x^{2}+\cdots+C_{100}^{100} 1^{0} x^{100}$ ．

$$
f^{\prime}(x)=100(1+x)^{99} . f(0.0001) \approx f(0)+f^{\prime}(0)(0.0001-0)=1.01
$$

Applications to Physics

Differentials

The ideas behind linear approximations are sometimes formulated in the terminology and notation of differentials（微分）．If $y=f(x)$ ，where f is a differentiable function， then the differential $\mathrm{d} x$ is an independent variable；that is， $\mathrm{d} x$ can be given the value of any real number．The differential $\mathrm{d} y$ is then defined in terms of $\mathrm{d} x$ by the equation

$$
\mathrm{d} y \stackrel{\text { def. }}{=} f^{\prime}(x) \mathrm{d} x .
$$

So $\mathrm{d} y$ is a dependent variable；it depends on the values of x and $\mathrm{d} x$ ．

The geometric meaning of differentials is shown in Figure 1.

Figure 1：Geometric meaning of differentials．
Let $P(x, f(x))$ and $Q(x+\Delta x, f(x+\Delta x))$ be points on the graph of f and let $\mathrm{d} x=\Delta x$ ．The corresponding change in y is $\Delta y=f(x+\Delta x)-f(x)$ ．The slope of the tangent line $P R$ is the derivative $f^{\prime}(x)$ ．Thus the directed distance from S to R is $f^{\prime}(x) \mathrm{d} x=\mathrm{d} y$ ．Therefore $\mathrm{d} y$ represents the amount that the tangent line rises or falls（the change in the linearization），whereas Δy represents the amount that the curve $y=f(x)$ rises or falls when x changes by an amount $\mathrm{d} x$ ．

Example 7 （page 254）．Compare the values of Δy and d y if $y=f(x)=x^{3}+x^{2}-$ $2 x+1=9+14(x-2)+7(x-2)^{2}+(x-2)^{3}$ and x changes from 2 to 2.05 ．

Solution．Since $f(2)=9$ and $f(2.05)=9+14 \cdot 0.05+7 \cdot(0.05)^{2}+(0.05)^{3}=9.717625$ ， we have

\square 了解實際誤差 Δy 與微分 $\mathrm{d} y$ 的差別。

Example 8 （page 255）．The radius of a sphere was measured and found to be 21 cm with a possible error in measurement of at most 0.05 cm ．What is the maximum error in using this value of the radius to compute the volume of the sphere．

Solution．

看到這樣的誤差，你對這個球形物的「設計」感到滿意嗎？Although the possible error in Example 8 may appear to be rather large，a better picture of the error is given by the relative error（相對誤差），which is computed by dividing the error by the total volume：

$$
\frac{\Delta V}{V} \sim \frac{\mathrm{~d} V}{V}=\frac{4 \pi r^{2} \mathrm{~d} r}{\frac{4}{3} \pi r^{3}}=3 \frac{\mathrm{~d} r}{r}
$$

Thus the relative error in the volume is about three times the relative error in the radius．In Example 8 the relative error in the radius is approximately

$$
\frac{\mathrm{d} r}{r}=\frac{0.05}{21} \sim 0.0024
$$

and it produces a relative error of about 0.007 in the volume．The error could also be expressed as percentage error（誤差百分比）of 0.24% in the radius and 0.7% in the volume．

