3.6 Derivatives of Logarithmic Function (page 218)

Another application of implicit differentiation is getting the derivatives of logarithmic functions.

Example 1 (page 218). Compute $\frac{d}{dx}(\log_a x)$ and $\frac{d}{dx}(\ln x)$.

Solution. Let $y = \log_a x$. Then $a^y = x$. Differentiating this equation implicit with respect to x, we get

In particular, we put a = e then $\frac{d}{dx}(\ln x) =$.

Example 2 (page 220). Find f'(x) if $f(x) = \ln |x|$.

Solution. Since

$$f(x) = \begin{cases} \ln x & \text{if } x > 0\\ \ln(-x) & \text{if } x < 0, \end{cases} \text{ it follows that } f'(x) = \begin{cases} \frac{1}{x} & \text{if } x > 0\\ & \text{if } x < 0. \end{cases}$$

Thus f'(x) = for all $x \neq 0$.

Figure 1: $f(x) = \ln |x|$.

 $\Box f(x) = \ln |x|$ 的定義域是 _____

Application: Logarithmic Differentiation (對數微分法)

The calculation of derivatives of complicated functions involving products, quotients, or powers can be simplified by the method of *logarithmic differentiation*.

Example 3 (page 220). Differentiate $y = \frac{x^{\frac{3}{4}}\sqrt{x^2+1}}{(3x+2)^5}$. Solution. The Power Rule (page 221). If $n \in \mathbb{R}$ and $f(x) = x^n$, then $f'(x) = nx^{n-1}$.

Proof. Let $y = x^n$ and use logarithmic differentiation for $x \neq 0$:

If x = 0, by the definition of derivative, we have

$$f'(0) =$$

Example 4. Differentiate $y = x^x$. (The function is defined on x > 0) Solution.

Solution 2.

□ 注意 *xⁿ*, *a^x*, *x^x* 變數的位置, 求導法則均不同。

The Number e as a Limit

Example 5 (page 189). Show that $e = \lim_{x \to 0} (1+x)^{\frac{1}{x}} = \lim_{n \to \infty} (1+\frac{1}{n})^n$.

Solution. We have shown that if $f(x) = \ln x$, then $f'(x) = \frac{1}{x}$. Thus f'(1) = 1. From the definition of a derivative as a limit and the continuity of the logarithmic function, we have

$$f'(1) = \lim_{x \to 0} \frac{f(1+x) - f(1)}{x} =$$

Hence we have $\lim_{x\to 0} (1+x)^{\frac{1}{x}} = e$. If we put $n = \frac{1}{x}$, then $n \to \infty$ as $x \to 0^+$, then we get an alternative expression for e:

$$\lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n = e.$$

Example 6 (page 189). Show that $\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x$ for any x > 0.

Solution.