3．6 Derivatives of Logarithmic Function（page 218）

Another application of implicit differentiation is getting the derivatives of logarith－ mic functions．

Example 1 （page 218）．Compute $\frac{\mathrm{d}}{\mathrm{d} x}\left(\log _{a} x\right)$ and $\frac{\mathrm{d}}{\mathrm{d} x}(\ln x)$ ．
Solution．Let $y=\log _{a} x$ ．Then $a^{y}=x$ ．Differentiating this equation implicit with respect to x ，we get

In particular，we put $a=\mathrm{e}$ then $\frac{\mathrm{d}}{\mathrm{d} x}(\ln x)=$ \qquad ．

Example 2 （page 220）．Find $f^{\prime}(x)$ if $f(x)=\ln |x|$ ．
Solution．Since

$$
f(x)=\left\{\begin{array}{ll}
\ln x & \text { if } x>0 \\
\ln (-x) & \text { if } x<0,
\end{array} \text { it follows that } f^{\prime}(x)= \begin{cases}\frac{1}{x} & \text { if } x>0 \\
& \text { if } x<0\end{cases}\right.
$$

Thus $f^{\prime}(x)=$ \qquad for all $x \neq 0$ ．

Figure 1：$f(x)=\ln |x|$ ．$f(x)=\ln |x|$ 的定義域是 \qquad ．

Application：Logarithmic Differentiation（對數微分法）

The calculation of derivatives of complicated functions involving products，quotients， or powers can be simplified by the method of logarithmic differentiation．
Example 3 （page 220）．Differentiate $y=\frac{x^{\frac{3}{4}} \sqrt{x^{2}+1}}{(3 x+2)^{5}}$ ．
Solution．

The Power Rule（page 221）．If $n \in \mathbb{R}$ and $f(x)=x^{n}$ ，then $f^{\prime}(x)=n x^{n-1}$ ． Proof．Let $y=x^{n}$ and use logarithmic differentiation for $x \neq 0$ ：

If $x=0$ ，by the definition of derivative，we have

$$
f^{\prime}(0)=
$$

Example 4．Differentiate $y=x^{x}$ ．（The function is defined on $x>0$ ）

Solution．

Solution 2.

注意 x^{n}, a^{x}, x^{x} 變數的位置，求導法則均不同。
The Number e as a Limit

Example 5 （page 189）．Show that $\mathrm{e}=\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ ．
Solution．We have shown that if $f(x)=\ln x$ ，then $f^{\prime}(x)=\frac{1}{x}$ ．Thus $f^{\prime}(1)=1$ ． From the definition of a derivative as a limit and the continuity of the logarithmic function，we have

$$
\begin{aligned}
f^{\prime}(1) & =\lim _{x \rightarrow 0} \frac{f(1+x)-f(1)}{x}= \\
& =
\end{aligned}
$$

Hence we have $\lim _{x \rightarrow 0}(1+x)^{\frac{1}{x}}=\mathrm{e}$ ．If we put $n=\frac{1}{x}$ ，then $n \rightarrow \infty$ as $x \rightarrow 0^{+}$，then we get an alternative expression for e：

$$
\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}=\mathrm{e}
$$

Example 6 （page 189）．Show that $\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}=\mathrm{e}^{x}$ for any $x>0$ ．
Solution．

