3.5 Implicit Differentiation (page 208)

The functions that we have met so far can be described by expressing one variable explicitly in terms of another variable $y=f(x)$. However, there are a lot of functions are defined implicitly by a relation x and y and we formally write it as $F(x, y)=0$. For example, $F(x, y)=x^{2}+y^{2}-4=0, F(x, y)=x^{3}+y^{3}-6 x y=0$.

Figure 1: (a) A circle $x^{2}+y^{2}=4$. (b) The folium of Descartes $x^{3}+y^{3}-6 x y=0$.
Most of time, implicit functions are not "functions" (see the definition of a function in Section 1.1), but they are locally be expressed as functions.

Figure 2: A circle $x^{2}+y^{2}=4$.

Figure 3: The folium of Descartes $x^{3}+y^{3}-6 x y=0$.
Furthermore, it's not easy to solve implicit functions $F(x, y)=0$ to explicit ones $y=f(x)$. Fortunately, we can compute the derivative of implicit functions without solving implicit functions to explicit ones by \qquad _.

Example 1．If $x^{2}+y^{2}=r^{2}$ ，find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ ．

Solution．

Solution 2.

將隱函數 $F(x, y)=0$ 視爲 $F(x, y(x))=0$ 。
Example 2.

（a）Find y^{\prime} if $x^{3}+y^{3}=6 x y$ ．
（b）Find the tangent to the folium of Descartes $x^{3}+y^{3}=6 x y$ at the point $(3,3)$ ．
（c）At what point in the first quadrant is the tangent line horizontal？

Solution．

If we solve the equation $x^{3}+y^{3}=6 x y$ for y in terms of x ，we get three functions determined by the equation：

$$
y=f(x)=\sqrt[3]{-\frac{1}{2} x^{3}+\sqrt{\frac{1}{4} x^{6}-8 x^{3}}}+\sqrt[3]{-\frac{1}{2} x^{3}-\sqrt{\frac{1}{4} x^{6}-8 x^{3}}}
$$

and

$$
y=\frac{1}{2}\left(-f(x) \pm \sqrt{-3}\left(\sqrt[3]{-\frac{1}{2} x^{3}+\sqrt{\frac{1}{4} x^{6}-8 x^{3}}}-\sqrt[3]{-\frac{1}{2} x^{3}-\sqrt{\frac{1}{4} x^{6}-8 x^{3}}}\right)\right) .
$$

It is very complicated to get the derivative by these formulae．
Implicit differentiation works for a lot of equations such as $y^{5}+3 x^{2} y^{2}+5 x^{4}=12$ for which it is impossible to find an expression for y in terms of x ．

An application of implicit differentiation is derivatives of inverse functions．
Derivatives of Inverse Trigonometric Functions（page 214）．

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x} \sin ^{-1} x & =\frac{1}{\sqrt{1-x^{2}}} & \frac{\mathrm{~d}}{\mathrm{~d} x} \cos ^{-1} x & =-\frac{1}{\sqrt{1-x^{2}}}
\end{aligned} \quad \frac{\mathrm{~d}}{\mathrm{~d} x} \tan ^{-1} x=\frac{1}{1+x^{2}} .
$$

Proof．Let $y=y(x)=\sin ^{-1} x$ ，then $\sin y=x \Rightarrow \cos y \frac{\mathrm{~d} y}{\mathrm{~d} x}=1$ ．So

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{\cos y}=\frac{1}{\sqrt{1-\sin ^{2} y}}=\frac{1}{\sqrt{1-x^{2}}} .
$$$\sin ^{-1} x, \cos ^{-1} x, \tan ^{-1} x$ 的導函數要熟記；六個反三角函數的導函數也要會推導。

Example 3 （Derivatives of inverse functions）．Suppose f is a one－to－one differen－ tiable function and its inverse function f^{-1} is also differentiable．Show that

$$
\left(f^{-1}\right)^{\prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}
$$

provide that the denominator is not 0 ．

Solution．

Example 4．Find the tangent line of $x^{\frac{2}{3}}+y^{\frac{2}{3}}=a^{\frac{2}{3}}$ at $\left(x_{0}, y_{0}\right)$ and the length between x－intercept and y－intercept．

Solution．

Example 5．Suppose that $f(x) \in C^{2}(\mathbb{R})$ and $f(x)$ satisfies $x^{2}+x f(x)+(f(x))^{2}=k$ ， where k is a constant，and $f^{\prime}(a)=f^{\prime \prime}(a)=1$ ．Find a and k ．

Solution．

Example 6．Two curves are orthogonal（正交）if their tangent lines are perpen－ dicular at each point of intersection．Show that the given families of curves are orthogonal trajectories（正交軌線）of each other；that is，every curve is one family is orthogonal to every curve in the other family．
（a）$x^{2}+y^{2}=r^{2}, a x+b y=0$ ．
（b）$x^{2}+y^{2}=a x, x^{2}+y^{2}=b y$ ．

Solution．

（a）
（b）First，$x^{2}+y^{2}=a x \Rightarrow 2 x+2 y y^{\prime}=a \Rightarrow y^{\prime}=\frac{a-2 x}{2 y}$ if $y \neq 0$ ．Next，$x^{2}+y^{2}=$ $b y \Rightarrow 2 x+2 y y^{\prime}=b y^{\prime} \Rightarrow(b-2 y) y^{\prime}=2 x \Rightarrow y^{\prime}=\frac{2 x}{b-2 y}$ if $y \neq \frac{b}{2}$ ．So if $y \neq 0$ and $y \neq \frac{b}{2}$ ，we have
$m_{1} \cdot m_{2}=\frac{a-2 x}{2 y} \cdot \frac{2 x}{b-2 y}=\frac{2 a x-4 x^{2}}{2 b y-4 y^{2}}=\frac{2 x^{2}+2 y^{2}-4 x^{2}}{2 x^{2}+2 y^{2}-4 y^{2}}=\frac{2 y^{2}-2 x^{2}}{2 x^{2}-2 y^{2}}=-1$. If $y=0$ ，then $x^{2}-a x=x(x-a)=0 \Rightarrow x=0$ or $x=a$ ，so $x^{2}+y^{2}=a x$ has vertical tangent line at $x=0$ or $x=a$ ．If $(x, y)=(0,0), m_{2}=0$ ．If $(x, y)=(a, 0), a \neq 0$ ，no curves in the family $x^{2}+y^{2}=b y$ passes through $(a, 0)$ ．If $y=\frac{b}{2}$ ，then $x= \pm \frac{b}{2}$ ，so $x^{2}+y^{2}=b y$ has vertical tangent line at $\left(\frac{b}{2}, \pm \frac{b}{2}\right)$ ．At $\left(\frac{b}{2}, \pm \frac{b}{2}\right)$ ，we get $a=b$ ，and $m_{1}=a-2 x=b-2 \frac{b}{2}=0$ ，so $x^{2}+y^{2}=a x$ has horizontal tangent line at $\left(\frac{b}{2}, \pm \frac{b}{2}\right)$ ．

