2．8 The Derivative as a Function（page 152）

Definition 1 （page 152）．The derivative of $f(x)(f(x)$ 的導函數）is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} .
$$導函數 $f^{\prime}(x)$ 的定義域是 $\left\{x \in \mathbb{R} \mid f^{\prime}(x)\right.$ exists $\}$ 。左導函數記爲 $f_{-}^{\prime}(x)=\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h}$ ；右導函數記爲 $f_{+}^{\prime}(x)=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}$ 。導函數存在等價於左導函數與右導函數皆存在且相等。

Example 2．Let $f(x)=x^{3}$ ．Find $f^{\prime}(x)$ ．
Solution．By definition，

Other Notations

If we use the traditional notation $y=f(x)$ to indicate that the independent variable is x and the dependent variable is y ，then some common alternative notations for the derivative are as follows：

$$
f^{\prime}(x)=y^{\prime}=\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{\mathrm{d}}{\mathrm{~d} x} f(x)=D f(x)=D_{x} f(x)
$$

The symbols D and $\frac{\mathrm{d}}{\mathrm{d} x}$ are called differentiation operators（微分算子）because thy indicate the operation of differentiation．

We use the notation

$$
\left.\left.\frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{x=a} \quad \text { or } \quad \frac{\mathrm{d} y}{\mathrm{~d} x}\right]_{x=a}
$$

to indicate the value of a variable $\frac{\mathrm{d} y}{\mathrm{~d} x}$ at a specific number a ，which is a synonym for $f^{\prime}(a)$ ．

Definition 3 （page 155）．A function f is differentiable at a（在 $x=a$ 處可微分）if $f^{\prime}(a)$ exists．It is differentiable on an open interval (a, b)（or (a, ∞) or $(-\infty, a)$ or $(-\infty, \infty))$ if it is differentiable at every number in the interval．
\square 若函數只定義於 $[a, b]$ ，則端點的導數就只要看 $\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}$ 及 $\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}$ 。

Theorem 4 （page 157）．If f is differentiable at a ，then f is continuous at a ．
Proof of Theorem 4 is in the Appendix．Theorem 4 的逆敘述不對，例如：$f(x)=|x|$ 。數學上有一種函數是處處連續，但處處不可微分。

How Can a Function Fail to Be Differentiable？

（1）corner or kink：the graph of f has no tangent at this point and f is not differentiable there．
（2）discontinuity：f is not continuous at a ，then f is not differentiable at a ．
（3）vertical tangent line：f is continuous at a and $\lim _{x \rightarrow a}\left|f^{\prime}(x)\right|=\infty$ ．

Figure 1：Three ways for $f(x)$ not to be differentiable at $x=a$ ．

Higher Derivatives

If f is differentiable function，then its derivative f^{\prime} is also a function，so f^{\prime} may have a derivative of its own，denoted by $\left(f^{\prime}\right)^{\prime}=f^{\prime \prime}$ ．This new function $f^{\prime \prime}$ is called the second derivative of f（二次導數）．We write the second derivative of $y=f(x)$ as

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d} y}{\mathrm{~d} x}\right)=\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}
$$acceleration（加速度）：速度函數對時間的瞬間變化率。

The third derivative $f^{\prime \prime \prime}$（三次導數）is the derivative of the second derivative： $f^{\prime \prime \prime}=\left(f^{\prime \prime}\right)^{\prime}$ ．If $y=f(x)$ ，then alternative notations for the third derivative are

$$
y^{\prime \prime \prime}=f^{\prime \prime \prime}(x)=\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}\right)=\frac{\mathrm{d}^{3} y}{\mathrm{~d} x^{3}} .
$$

In general，the n－th derivative $(n \geq 4)$ of f is denoted by $f^{(n)}$ ．If $y=f(x)$ ，we write

$$
y^{n}=f^{(n)}(x)=\frac{\mathrm{d}^{n} y}{\mathrm{~d} x^{n}}
$$jerk（急動度，加加速度）：加速度的變化率。

Example 5．Suppose

$$
f(x)=\left\{\begin{array}{cl}
\frac{1-\cos x}{\sin x} & x>0 \\
a x+b & x \leq 0
\end{array}\right.
$$

Find a and b such that f is continuous and differentiable at $x=0$ ．

Solution．

\square 想清楚函數在一個點「連續」「可微分」的意義（數學定義）。
Example 6．Let $f(x)=x|x|$ ．Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ ．

Solution．

遇到分段定義的函數（例如這個例子中的 $x=0$ 處）必須「用定義」小心處理。割線斜率的極限 $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ 和切線斜率的極限 $\lim _{h \rightarrow 0} f^{\prime}(x+h)$ 是兩個不同的概念。記符號 $C^{k}(\mathbb{R})$ 爲所有 k 次求導後仍爲連續的函數所成的集合。若 $f(x) \in C^{1}(\mathbb{R})$ ，則有 $\lim _{x \rightarrow a} f^{\prime}(x)=f^{\prime}\left(\lim _{x \rightarrow a} x\right)=f^{\prime}(a)$ 。結論：$f(x)=x|x| \in C^{1}(\mathbb{R})$ 。
Appendix

Proof of Theorem 4. The goal is to show that $\lim _{x \rightarrow a} f(x)=f(a)$.
For $x \neq a$, we have

$$
f(x)-f(a)=\frac{f(x)-f(a)}{x-a} \cdot(x-a),
$$

so

$$
\begin{aligned}
\lim _{x \rightarrow a}(f(x)-f(a)) & =\lim _{x \rightarrow a}\left(\frac{f(x)-f(a)}{x-a} \cdot(x-a)\right)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \cdot \lim _{x \rightarrow a}(x-a) \\
& =f^{\prime}(a) \cdot 0=0
\end{aligned}
$$

Hence

$$
\begin{aligned}
\lim _{x \rightarrow a} f(x) & =\lim _{x \rightarrow a}(f(x)-f(a)+f(a))=\lim _{x \rightarrow a}(f(x)-f(a))+\lim _{x \rightarrow a} f(a) \\
& =0+f(a)=f(a)
\end{aligned}
$$

