2．7 Derivatives and Rates of Change（page 140）

Definition 1 （page 141）．The tangent line（切線）to the curve $y=f(x)$ at the point $P(a, f(a))$ is the line through P with slope（斜率）

$$
m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

provided that this limit exists．

Figure 1：Tangent line is the limiting position of the secant line（割線）．
\square 切線斜率的定義是 \qquad。

Example 2．Find an equation of the tangent line to the hyperbola $y=\frac{1}{x}$ at the point $(1,1)$ ．

Solution．Let $f(x)=\frac{1}{x}$ ．Then the slope of the tangent at $(1,1)$ is

Therefore，an equation of the tangent at the point $(1,1)$ is \qquad ．

Definition 3 （page 143）．If $f(x)$ is the position function，then the average velocity （平均速度）is

$$
\text { average velocity }=\frac{\text { displacement }}{\text { time }}=\frac{f(a+h)-f(a)}{h},
$$

and the velocity（or instantaneous velocity，瞬時速度）$v(a)$ at time $t=a$ be the limit of these average velocities：

$$
v(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} .
$$The speed（速率）of the particle is the absolute value of the velocity $|v(a)|$ ．

Example 4．Suppose that a ball is dropped from the upper observation deck of Taipei 101， 508 m above the ground．
（a）What is the velocity of the ball after 5 seconds？
（b）How fast is the ball traveling when it hits the ground？
Solution．Using the equation of motion $s=f(t)=4.9 t^{2}$ ，we have
（a）The velocity after 5 is \qquad ．
 hits the ground is

Definition 5 （page 144）．The derivative of a function $f(x)$ at a number $x=a$（函數 $f(x)$ 在 $x=a$ 的導數），denoted by $f^{\prime}(a)$ ，is

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

if this limit exists．
If we use the point－slope form（點斜式）of the equation of a line，we can write an equation of the tangent line to the curve $y=f(x)$ at the point $P(a, f(a))$ ：

$$
y-f(a)=f^{\prime}(a)(x-a) .
$$

接下來的章節將討論如何計算各種函數的導數，導函數及其性質。
Example 6．Consider

$$
f(x)= \begin{cases}x^{\alpha} \sin \frac{1}{x} & \text { if } x \neq 0 \\ 0 & \text { if } x=0\end{cases}
$$

where α is a natural number．Determine whether $f^{\prime}(0)$ exists．
Solution．By the definition of derivative，we have這個例題很重要，之後還有延伸的問題，務必弄清楚。

Rates of Change

Suppose y is a quantity that depends on another quantity x ．Thus y is a function of x and we write $y=f(x)$ ．If x changes from x_{1} to x_{2} ，then the change in x（also called the increment（增加量）of x ）is $\Delta x=x_{2}-x_{1}$ ，and the corresponding change in y is $\Delta y=f\left(x_{2}\right)-f\left(x_{1}\right)$ ．The difference quotient

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}
$$

is called the average of the change of y with respect to x（平均變化率）over the interval $\left[x_{1}, x_{2}\right]$ ．We say

$$
\text { instantaneous rate of change }=\lim _{\Delta x \rightarrow 0} \frac{\Delta y}{\Delta x}=\lim _{x_{2} \rightarrow x_{1}} \frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} .
$$

The derivative $f^{\prime}(a)$ is the instantaneous rate of change of $y=f(x)$ with respect to x when $x=a$（瞬間變化率）．

Examples of rates of change：
（1）Velocity of an object：the rate of change of displacement with respect to time．
（2）Marginal cost（邊際成本）：the rate of change of production cost with respect to the number of items produced．
（3）Interest（in economics）：the rate of change of the debt with respect to time．
（4）Power（in physics，功率）：the rate of change of work with respect to time．
（5）Rate of reaction（in chemistry）：the rate of change in the concentration（濃度） of a reactant with respect to time．
（6）Rate of change of the population of a colony of bacteria with respect to time． （biology）

