2．5 Continuity（page 114）

Definition 1 （continuous at a point，page 114）．A function $f(x)$ is continuous at $x=a$（在 $x=a$ 處連續）if

$$
\lim _{x \rightarrow a} f(x)=f(a) .
$$

We say that $f(x)$ is discontinuous at $x=a$（or $f(x)$ has a discontinuity at $x=a$ ） （在 $x=a$ 處不連續）if $f(x)$ is not continuous at a ．

Figure 1：$f(x)$ is continuous at $x=a$ ．
\square 函數 $f(x)$ 在 $x=a$ 處連續必須滿足以下三件事：
（1）$f(x)$ 在 $x=a$ 有定義，即 $f(a)$ 存在。
（2）極限 $\lim _{x \rightarrow a} f(x)$ 存在，即左極限 $\lim _{x \rightarrow a^{-}} f(x)$ 與 $\lim _{x \rightarrow a^{+}} f(x)$ 存在且相等。
（3） $\lim _{x \rightarrow a} f(x)=f(a)$ ；極限值等於函數值。
連續函數的另一個觀點：「極限」與「函數」可交換，即 $\lim _{x \rightarrow a} f(x)=f\left(\lim _{x \rightarrow a} x\right)=f(a)$ 。 There are three types of discontinuity：
（1）removable discontinuity（可移不連續點）：We can＂redefine＂the value of the function $f(x)$ at $x=a$ such that $f(x)$ is continuous at $x=a$ ．
（2）infinite discontinuity（無限不連續點）．
（3）jump discontinuity（跳躍不連續點）．

Figure 2：Three types of discontinuity．

Definition 2 （continuous from the right（or left）（右連續與左連續），page 116）。
（a）A function $f(x)$ is continuous from the right at $x=a$ if $\lim _{x \rightarrow a^{+}} f(x)=f(a)$ ．
（b）A function $f(x)$ is continuous from the left at $x=a$ if $\lim _{x \rightarrow a^{-}} f(x)=f(a)$ ．

Figure 3：$f(x)$ is continuous（a）from the right；（b）from the left；（c）at endpoints．

Example 3．Discuss the continuity of the following functions：

$$
f(x)=\frac{x^{2}-x-2}{x-2}, \quad g(x)=\left\{\begin{array}{ll}
\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\
1 & \text { if } x=2,
\end{array} \quad \quad h(x)=\left\{\begin{array}{ll}
\frac{x^{2}-x-2}{x-2} & \text { if } x \neq 2 \\
3 & \text { if } x=2
\end{array} .\right.\right.
$$

Solution．

Example 4 （同學若有興趣可想一想這個例子）．The Riemann function is defined by

$$
f(x)=\left\{\begin{array}{ll}
\frac{1}{q} & \text { if } x=\frac{p}{q},(p, q)=1 \text { is rational } \\
0 & \text { if } x \text { is irrational }
\end{array} .\right.
$$

Then the Riemann function is continuous at irrational numbers．
Definition 5 （continuous on an interval，page 117）．A function $f(x)$ is continuous on an interval（在區間上連續）if it is continuous at every point in the interval．If $f(x)$ is defined only on one side of an endpoint of the interval，we understand continuous at the endpoint to mean continuous from the right or continuous from the left．

Theorem 6 （properties of continuous functions，page 117）．If $f(x)$ and $g(x)$ are continuous at $x=a$ ，and c is a constant，then the following functions are also continuous $x=a$ ：
（1）$(f \pm g)(x)=f(x) \pm g(x)$
（2）$c f(x), c g(x)$
（3）$f(x) g(x)$
（4）$\frac{f(x)}{g(x)}$ if $g(a) \neq 0$ ．
Proof of（1）．Since $f(x)$ and $g(x)$ are continuous at $x=a$ ，we have

Therefore連續函數經四則運算後仍爲連續函數（除法要注意扣除分母的零點）。
Theorem 7 （page 120）．The following type of functions are continuous at every number in their domains：
polynomials rational functions root functions
trigonometric functions inverse trigonometric functions exponential functions
logarithmic functions
Theorem 8 （page 120）．If f is continuous at b and $\lim _{x \rightarrow a} g(x)=b$ ，then $\lim _{x \rightarrow a} f(g(x))=$ $f(b)$ ．In other words，

$$
\lim _{x \rightarrow a} f(g(x))=f\left(\lim _{x \rightarrow a} g(x)\right)=f(b) .
$$

Example 9．Evaluate $\lim _{x \rightarrow 1} \sin ^{-1}\left(\frac{1-\sqrt{x}}{1-x}\right)$

Solution．

Theorem 10 （page 121）．If g is continuous at a and f is continuous at $g(a)$ ，then the composition function $f \circ g$ given by $(f \circ g)(x)=f(g(x))$ is continuous at a ．

Proof．The function $g(x)$ is continuous at $x=a$ implies

連續函數的合成函數也連續。

Theorem 11 （The Intermediate Value Theorem，中間值定理，page 122）．Suppose that $f(x)$ is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$ ，where $f(a) \neq f(b)$ ．Then there exists a number c in (a, b) such that $f(c)=N$ ．

Figure 4：The Intermediate Value Theorem．
\square＂$f(x)$ is continuous＂是必要的。＂closed＂interval $[a, b]$ 是必要的。交點個數並不唯一。

Applications of Intermediate Value Theorem

勘根定理上山下山同時間有限個點的平均和某點取值一樣切蛋糕Example 12．Suppose f is a continuous function on $[a, b]$ and $a \leq f(x) \leq b$ for all $x \in[a, b]$ ．Show that there exists $c \in[a, b]$ such that $f(c)=c$ ．

Solution．

